Abstract

Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although, the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here we used the adult fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of the Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting conservation of this cellular response between insect and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data have been provided for Figures 2 and 4 in the Supplement.

Article and author information

Author details

  1. Gabriela Krejčová

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    For correspondence
    krejcovagabriela@seznam.cz
    Competing interests
    The authors declare that no competing interests exist.
  2. Adéla Danielová

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Pavla Nedbalová

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Michalina Kazek

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Lukáš Strych

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Geetanjali Chawla

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jason M Tennessen

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3527-5683
  8. Jaroslava Lieskovská

    Department of Medical Biology, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Marek Jindra

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  10. Tomáš Doležal

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. Adam Bajgar

    Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
    For correspondence
    bajgaa00@prf.jcu.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9721-7534

Funding

Grantová Agentura České Republiky (Project 17-16406S)

  • Tomáš Doležal

National Institute of General Medical Sciences (R35 MIRA 1R35GM119557)

  • Jason M Tennessen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Version history

  1. Received: July 25, 2019
  2. Accepted: October 12, 2019
  3. Accepted Manuscript published: October 14, 2019 (version 1)
  4. Version of Record published: November 20, 2019 (version 2)

Copyright

© 2019, Krejčová et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,288
    views
  • 670
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriela Krejčová
  2. Adéla Danielová
  3. Pavla Nedbalová
  4. Michalina Kazek
  5. Lukáš Strych
  6. Geetanjali Chawla
  7. Jason M Tennessen
  8. Jaroslava Lieskovská
  9. Marek Jindra
  10. Tomáš Doležal
  11. Adam Bajgar
(2019)
Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense
eLife 8:e50414.
https://doi.org/10.7554/eLife.50414

Share this article

https://doi.org/10.7554/eLife.50414

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.