Abstract

Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans isolates. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data are provided for all Figures.

Article and author information

Author details

  1. Tim A Crombie

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5645-4154
  2. Stefan Zdraljevic

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2883-4616
  3. Daniel E Cook

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robyn E Tanny

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shannon C Brady

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ye Wang

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kathryn S Evans

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steffen Hahnel

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daehan Lee

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Briana C Rodriguez

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Gaotian Zhang

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Joost van der Zwagg

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Karin Kiontke

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1588-4884
  14. Erik C Andersen

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    erik.andersen@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0229-9651

Funding

No external funding was received for this work.

Copyright

© 2019, Crombie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,647
    views
  • 420
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tim A Crombie
  2. Stefan Zdraljevic
  3. Daniel E Cook
  4. Robyn E Tanny
  5. Shannon C Brady
  6. Ye Wang
  7. Kathryn S Evans
  8. Steffen Hahnel
  9. Daehan Lee
  10. Briana C Rodriguez
  11. Gaotian Zhang
  12. Joost van der Zwagg
  13. Karin Kiontke
  14. Erik C Andersen
(2019)
Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations
eLife 8:e50465.
https://doi.org/10.7554/eLife.50465

Share this article

https://doi.org/10.7554/eLife.50465