Temporal chunking as a mechanism for unsupervised learning of task-sets

  1. Flora Bouchacourt
  2. Stefano Palminteri
  3. Etienne Koechlin
  4. Srdjan Ostojic  Is a corresponding author
  1. Ecole Normale Superieure Paris, France

Abstract

Depending on environmental demands, humans can learn and exploit multiple concurrent sets of stimulus-response associations. Mechanisms underlying the learning of such task-sets remain unknown. Here we investigate the hypothesis that task-set learning relies on unsupervised chunking of stimulus-response associations that occur in temporal proximity. We examine behavioral and neural data from a task-set learning experiment using a network model. We first show that task-set learning can be achieved provided the timescale of chunking is slower than the timescale of stimulus-response learning. Fitting the model to behavioral data on a subject-by-subject basis confirmed this expectation and led to specific predictions linking chunking and task-set retrieval that were borne out by behavioral performance and reaction times. Comparing the model activity with BOLD signal allowed us to identify neural correlates of task-set retrieval in a functional network involving ventral and dorsal prefrontal cortex, with the dorsal system preferentially engaged when retrievals are used to improve performance.

Data availability

Code has been uploaded to https://github.com/florapython/TemporalChunkingTaskSets. Statistical maps corresponding to human subjects data have been uploadeed to Neurovault (https://neurovault.org/collections/6754/).

The following previously published data sets were used
    1. A Collins
    2. E Koechlin
    (2012) Human behaviour data
    https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001293.

Article and author information

Author details

  1. Flora Bouchacourt

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Palminteri

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5768-6646
  3. Etienne Koechlin

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Srdjan Ostojic

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    For correspondence
    srdjan.ostojic@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7473-1223

Funding

Ecole de Neuroscience de Paris (Doctoral Fellowship)

  • Flora Bouchacourt

Agence Nationale de la Recherche (ANR-16-CE37- 0016-01)

  • Srdjan Ostojic

Agence Nationale de la Recherche (ANR-17-ERC2-0005-01)

  • Srdjan Ostojic

Inserm (R16069JS)

  • Stefano Palminteri

Agence Nationale de la Recherche (ANR-16-NEUC-0004)

  • Stefano Palminteri

Fondation Fyssen

  • Stefano Palminteri

Fondation Schlumberger

  • Stefano Palminteri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants provided written informed consent approved by the French National Ethics Committee.

Copyright

© 2020, Bouchacourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    views
  • 405
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora Bouchacourt
  2. Stefano Palminteri
  3. Etienne Koechlin
  4. Srdjan Ostojic
(2020)
Temporal chunking as a mechanism for unsupervised learning of task-sets
eLife 9:e50469.
https://doi.org/10.7554/eLife.50469

Share this article

https://doi.org/10.7554/eLife.50469

Further reading

    1. Neuroscience
    GVS Devakinandan, Mark Terasaki, Adish Dani
    Research Article

    Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.