Temporal chunking as a mechanism for unsupervised learning of task-sets

  1. Flora Bouchacourt
  2. Stefano Palminteri
  3. Etienne Koechlin
  4. Srdjan Ostojic  Is a corresponding author
  1. Ecole Normale Superieure Paris, France

Abstract

Depending on environmental demands, humans can learn and exploit multiple concurrent sets of stimulus-response associations. Mechanisms underlying the learning of such task-sets remain unknown. Here we investigate the hypothesis that task-set learning relies on unsupervised chunking of stimulus-response associations that occur in temporal proximity. We examine behavioral and neural data from a task-set learning experiment using a network model. We first show that task-set learning can be achieved provided the timescale of chunking is slower than the timescale of stimulus-response learning. Fitting the model to behavioral data on a subject-by-subject basis confirmed this expectation and led to specific predictions linking chunking and task-set retrieval that were borne out by behavioral performance and reaction times. Comparing the model activity with BOLD signal allowed us to identify neural correlates of task-set retrieval in a functional network involving ventral and dorsal prefrontal cortex, with the dorsal system preferentially engaged when retrievals are used to improve performance.

Data availability

Code has been uploaded to https://github.com/florapython/TemporalChunkingTaskSets. Statistical maps corresponding to human subjects data have been uploadeed to Neurovault (https://neurovault.org/collections/6754/).

The following previously published data sets were used
    1. A Collins
    2. E Koechlin
    (2012) Human behaviour data
    https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001293.

Article and author information

Author details

  1. Flora Bouchacourt

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Palminteri

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5768-6646
  3. Etienne Koechlin

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Srdjan Ostojic

    Laboratoire de Neurosciences Cognitives et Computationelles, Ecole Normale Superieure Paris, Paris, France
    For correspondence
    srdjan.ostojic@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7473-1223

Funding

Ecole de Neuroscience de Paris (Doctoral Fellowship)

  • Flora Bouchacourt

Agence Nationale de la Recherche (ANR-16-CE37- 0016-01)

  • Srdjan Ostojic

Agence Nationale de la Recherche (ANR-17-ERC2-0005-01)

  • Srdjan Ostojic

Inserm (R16069JS)

  • Stefano Palminteri

Agence Nationale de la Recherche (ANR-16-NEUC-0004)

  • Stefano Palminteri

Fondation Fyssen

  • Stefano Palminteri

Fondation Schlumberger

  • Stefano Palminteri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark CW van Rossum, University of Nottingham, United Kingdom

Ethics

Human subjects: Participants provided written informed consent approved by the French National Ethics Committee.

Version history

  1. Received: July 23, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Version of Record published: March 31, 2020 (version 2)

Copyright

© 2020, Bouchacourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,465
    views
  • 397
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora Bouchacourt
  2. Stefano Palminteri
  3. Etienne Koechlin
  4. Srdjan Ostojic
(2020)
Temporal chunking as a mechanism for unsupervised learning of task-sets
eLife 9:e50469.
https://doi.org/10.7554/eLife.50469

Share this article

https://doi.org/10.7554/eLife.50469

Further reading

    1. Neuroscience
    Anja T Zai, Anna E Stepien ... Richard HR Hahnloser
    Research Article

    Songbirds’ vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article Updated

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that – in addition to jumping, and rearing – is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing – all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveals a fear conditioned cue to orchestrate a temporally organized suite of behaviors.