Abstract

Myofibrils are huge cytoskeletal assemblies embedded in the cytosol of muscle cells. They consist of arrays of sarcomeres, the smallest contractile unit of muscles. Within a muscle type, myofibril diameter is highly invariant and contributes to its physiological properties, yet little is known about the underlying mechanisms setting myofibril diameter. Here we show that the PDZ and LIM domain protein Zasp, a structural component of Z-discs, mediates Z-disc and thereby myofibril growth through protein oligomerization. Oligomerization is induced by an interaction of its ZM domain with LIM domains. Oligomerization is terminated upon upregulation of shorter Zasp isoforms which lack LIM domains at later developmental stages. The balance between these two isoforms, which we call growing and blocking isoforms sets the stereotyped diameter of myofibrils. If blocking isoforms dominate, myofibrils become smaller. If growing isoforms dominate, myofibrils and Z-discs enlarge, eventually resulting in large pathological aggregates that disrupt muscle function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Nicanor González-Morales

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1305-8992
  2. Yu Shu Xiao

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Aaron Schilling

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Océane Marescal

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Kuo An Liao

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Frieder Schöck

    Department of Biology, McGill University, Montreal, Canada
    For correspondence
    frieder.schoeck@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1351-0574

Funding

Canadian Institutes of Health Research (MOP-142475)

  • Nicanor González-Morales
  • Yu Shu Xiao
  • Matthew Aaron Schilling
  • Océane Marescal
  • Kuo An Liao

Canadian Institutes of Health Research (PJT-155995)

  • Nicanor González-Morales
  • Yu Shu Xiao
  • Matthew Aaron Schilling
  • Océane Marescal
  • Kuo An Liao

Natural Sciences and Engineering Research Council of Canada (RGPIN 2016-06793)

  • Nicanor González-Morales
  • Yu Shu Xiao
  • Matthew Aaron Schilling
  • Océane Marescal
  • Kuo An Liao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Schnorrer, Aix Marseille University, France

Version history

  1. Received: July 24, 2019
  2. Accepted: November 18, 2019
  3. Accepted Manuscript published: November 20, 2019 (version 1)
  4. Version of Record published: December 13, 2019 (version 2)
  5. Version of Record updated: December 16, 2019 (version 3)

Copyright

© 2019, González-Morales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,119
    Page views
  • 268
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicanor González-Morales
  2. Yu Shu Xiao
  3. Matthew Aaron Schilling
  4. Océane Marescal
  5. Kuo An Liao
  6. Frieder Schöck
(2019)
Myofibril diameter is set by a finely tuned mechanism of protein oligomerization in Drosophila
eLife 8:e50496.
https://doi.org/10.7554/eLife.50496

Share this article

https://doi.org/10.7554/eLife.50496

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.