The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs

  1. Thibaut Laboute
  2. Jorge Gandía
  3. Lucie P Pellissier
  4. Yannick Corde
  5. Florian Rebeillard
  6. Maria Gallo
  7. Christophe Gauthier
  8. Audrey Léauté
  9. Jorge Diaz
  10. Anne Poupon
  11. Brigitte L Kieffer
  12. Julie Le Merrer  Is a corresponding author
  13. Jérôme AJ Becker  Is a corresponding author
  1. INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, France
  2. Inserm, France
  3. Pompeu Fabra University, Spain
  4. McGill University, Canada

Abstract

GPR88 is an orphan G protein coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in Gpr88 null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors in vitro and revealed that GPR88 inhibits the activation of both their G protein- and b-arrestin-dependent signaling pathways. In Gpr88 knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes b-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thibaut Laboute

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0870-1891
  2. Jorge Gandía

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1711-8075
  3. Lucie P Pellissier

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Yannick Corde

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Florian Rebeillard

    Cellular Biology and Molecular Pharmacology of Central Receptors, Inserm, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Gallo

    Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Christophe Gauthier

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Audrey Léauté

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jorge Diaz

    Cellular Biology and Molecular Pharmacology of Central Receptors, Inserm, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Anne Poupon

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Brigitte L Kieffer

    Department of Psychiatry, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8809-8334
  12. Julie Le Merrer

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    For correspondence
    julie.le-merrer@inra.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Jérôme AJ Becker

    Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours, Inserm, Nouzilly, France
    For correspondence
    jerome.becker@inra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0039-0067

Funding

Region Centre-Val de Loire (ARD2020 Biomedicaments - GPCRAb)

  • Julie Le Merrer
  • Jérôme AJ Becker

LabEX MAbImprove

  • Julie Le Merrer
  • Jérôme AJ Becker

Fonds Unique Interministériel (ATHOS)

  • Brigitte L Kieffer
  • Julie Le Merrer
  • Jérôme AJ Becker

Marie-Curie/AgreeSkills Program (Postdoctoral Fellowshio)

  • Lucie P Pellissier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were conducted in accordance with the European Communities Council Directive 2010/63/EU and approved by the Comité d'Ethique pour l'Expérimentation Animale de l'ICS et de l'IGBMC (Com'Eth, 2012-047)

Copyright

© 2020, Laboute et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,427
    views
  • 659
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thibaut Laboute
  2. Jorge Gandía
  3. Lucie P Pellissier
  4. Yannick Corde
  5. Florian Rebeillard
  6. Maria Gallo
  7. Christophe Gauthier
  8. Audrey Léauté
  9. Jorge Diaz
  10. Anne Poupon
  11. Brigitte L Kieffer
  12. Julie Le Merrer
  13. Jérôme AJ Becker
(2020)
The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs
eLife 9:e50519.
https://doi.org/10.7554/eLife.50519

Share this article

https://doi.org/10.7554/eLife.50519

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.