MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development

  1. Kanella Prodromidou  Is a corresponding author
  2. Ioannis S Vlachos
  3. Maria Gaitanou
  4. Georgia Kouroupi
  5. Artemis G Hatzigeorgiou
  6. Rebecca Matsas  Is a corresponding author
  1. Hellenic Pasteur Institute, Greece
  2. Beth Israel Deaconess Medical Center, United States
  3. DIANA-Lab, University of Thessaly, Greece

Abstract

Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.

Data availability

Sequencing data have been deposited in GEO under accession code GSE101548. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kanella Prodromidou

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    For correspondence
    kprodromidou@pasteur.gr
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioannis S Vlachos

    Pathology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Gaitanou

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgia Kouroupi

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Artemis G Hatzigeorgiou

    Department of Electrical & Computer Engineering, DIANA-Lab, University of Thessaly, Volos, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Matsas

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    For correspondence
    rmatsa@pasteur.gr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4027-348X

Funding

Ministry of Education and Religious Affairs, Sport and Culture (Greek General Secreteriat for Research and Technology Grant EXCELLENCE 2272)

  • Rebecca Matsas

Ministry of Education and Religious Affairs, Sport and Culture (Greek General Secreteriat for Research and Technology Grant MIS 5002486)

  • Rebecca Matsas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Human subjects: All procedures for generation of human iPSCs were approved by the Scientific Council and Ethics Committee of Attikon University Hospital (Athens, Greece), which is one of the Mendelian forms of Parkinson's Disease clinical centers, and by the Hellenic Pasteur Institute Ethics Committee overlooking stem cell research. Informed consent was obtained from all donors before skin biopsy. Proc Natl Acad Sci U S A. 2017 May 2;114(18)

Version history

  1. Received: July 26, 2019
  2. Accepted: May 21, 2020
  3. Accepted Manuscript published: May 27, 2020 (version 1)
  4. Version of Record published: June 15, 2020 (version 2)

Copyright

© 2020, Prodromidou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,621
    views
  • 239
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kanella Prodromidou
  2. Ioannis S Vlachos
  3. Maria Gaitanou
  4. Georgia Kouroupi
  5. Artemis G Hatzigeorgiou
  6. Rebecca Matsas
(2020)
MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development
eLife 9:e50561.
https://doi.org/10.7554/eLife.50561

Share this article

https://doi.org/10.7554/eLife.50561

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.