MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development

  1. Kanella Prodromidou  Is a corresponding author
  2. Ioannis S Vlachos
  3. Maria Gaitanou
  4. Georgia Kouroupi
  5. Artemis G Hatzigeorgiou
  6. Rebecca Matsas  Is a corresponding author
  1. Hellenic Pasteur Institute, Greece
  2. Beth Israel Deaconess Medical Center, United States
  3. DIANA-Lab, University of Thessaly, Greece

Abstract

Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.

Data availability

Sequencing data have been deposited in GEO under accession code GSE101548. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kanella Prodromidou

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    For correspondence
    kprodromidou@pasteur.gr
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioannis S Vlachos

    Pathology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Gaitanou

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgia Kouroupi

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Artemis G Hatzigeorgiou

    Department of Electrical & Computer Engineering, DIANA-Lab, University of Thessaly, Volos, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Matsas

    Neurobiology, Hellenic Pasteur Institute, Athens, Greece
    For correspondence
    rmatsa@pasteur.gr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4027-348X

Funding

Ministry of Education and Religious Affairs, Sport and Culture (Greek General Secreteriat for Research and Technology Grant EXCELLENCE 2272)

  • Rebecca Matsas

Ministry of Education and Religious Affairs, Sport and Culture (Greek General Secreteriat for Research and Technology Grant MIS 5002486)

  • Rebecca Matsas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures for generation of human iPSCs were approved by the Scientific Council and Ethics Committee of Attikon University Hospital (Athens, Greece), which is one of the Mendelian forms of Parkinson's Disease clinical centers, and by the Hellenic Pasteur Institute Ethics Committee overlooking stem cell research. Informed consent was obtained from all donors before skin biopsy. Proc Natl Acad Sci U S A. 2017 May 2;114(18)

Copyright

© 2020, Prodromidou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,747
    views
  • 249
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kanella Prodromidou
  2. Ioannis S Vlachos
  3. Maria Gaitanou
  4. Georgia Kouroupi
  5. Artemis G Hatzigeorgiou
  6. Rebecca Matsas
(2020)
MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development
eLife 9:e50561.
https://doi.org/10.7554/eLife.50561

Share this article

https://doi.org/10.7554/eLife.50561

Further reading

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.