Reliability of an interneuron response depends on an integrated sensory state

  1. May Dobosiewicz
  2. Qiang Liu
  3. Cornelia I Bargmann  Is a corresponding author
  1. The Rockefeller University, United States
  2. Chan Zuckerberg Initiative, United States
6 figures, 1 table and 7 additional files

Figures

Figure 1 with 3 supplements
Optogenetic activation of AWA sensory neurons elicits unreliable AIA calcium responses.

(A and B) AWA GCaMP2.2b (A) or AIA GCaMP5A (B) calcium responses to 10 s pulses of increasing concentrations of diacetyl and to AWA optogenetic stimulation. Bold lines indicate mean response, and …

Figure 1—figure supplement 1
Experimental configuration and calibration of simultaneous GCaMP-Chrimson imaging conditions.

(A) Schematic of experimental configuration. Animals are paralyzed in a microfluidic device and their neural activity is recorded during exposure to odor or light. Two arenas can be recorded …

Figure 1—figure supplement 2
Validation of AIA response thresholding procedure.

(A) Proportion of AIA calcium traces counted as ‘responses’ at varying fluorescence (x-axis) and time derivative (color axis) threshold parameters to various stimuli. Thresholds depend on the …

Figure 1—figure supplement 3
Sequential imaging of AIA responses to odor or AWA::Chrimson stimulation.

(A) Heat maps of AWA and AIA responses to AWA::Chrimson stimulation, combined over all experiments. AWA: n = 268; AIA: n = 569. (B) Delay between the time at which 50% of AWA versus 50% of AIA …

Figure 2 with 1 supplement
Gap junctions mediate AWA-to-AIA communication.

(A, C, D and E) Cumulative response time profiles of AIA responses to 1.15 µM diacetyl in WT versus odr-7 animals (AWA cell fate mutants) (A), odr-10 animals (AWA diacetyl receptor mutants) (A), …

Figure 2—figure supplement 1
Gap junctions contribute to AWA-to-AIA communication, additional data.

(A) Cumulative response time profiles of AIA responses to AWA::Chrimson stimulation in WT versus animals expressing Tetanus Toxin Light Chain A (TeTx) in AWA. (B and D) Cumulative response time …

Figure 3 with 1 supplement
Chemical synapses inhibit AIA.

(A) Cumulative response time profiles of AIA responses to 11.5 nM diacetyl in WT versus unc-13(e51) and unc-18(e234) animals (synaptic transmission mutants). (B) Heat maps of AIA responses to …

Figure 3—figure supplement 1
Chemical synapses inhibit AIA, additional data.

(A) Cumulative response time profiles of AIA to 1.15 µM diacetyl in WT versus unc-13(e51), unc-18(e234), and unc-18(e81) animals (synaptic transmission mutants). (B) Heat maps of AIA responses to …

Figure 4 with 2 supplements
Glutamatergic sensory neurons cooperate to inhibit AIA.

(A) Simplified diagram of connections between AWA, AIA and four glutamatergic sensory neurons, based on White et al. (1986). (B) Schematic of cell-selective glutamate knockout genetic strategy (López…

Figure 4—figure supplement 1
Controls and heat maps for FRT-FLP recombination.

(A) Heat maps of AIA responses to AWA::Chrimson in eat-4-FRT control strain, unc-18, FRT+nFlippase animals lacking glutamate release in specific sensory neurons, shown in Figure 4C–G, WT, and WT …

Figure 4—figure supplement 2
Additional representations of AIA data from Figures 14.

(A – C) Negative correlation between AIA GCaMP fluorescence at baseline and magnitude of responses to AWA::Chrimson (A), 11.5 nM diacetyl (B), and 1.15 µM diacetyl (C). Only responses to the first …

Figure 5 with 3 supplements
Multiple sensory neurons detect diacetyl and isoamyl alcohol.

(A – C) Mean ASK (A), AWC (B), and ASE (C) responses to 10 s pulses of buffer (0) or 11.5 nM or 1.15 µM diacetyl. ASK: n = 82–115; AWC: n = 52–60; ASE: n = 42–54. Shading indicates ± SEM. (D) Mean …

Figure 5—figure supplement 1
Controls for diacetyl activation of sensory neurons.

(A – C) Magnitude of individual ASK (A), AWC (B), or ASE (C) responses to buffer (0), 11.5 nM or 1.15 µM diacetyl shown in Figure 5A–C. Boxes show median and interquartile range. (D) Magnitude of …

Figure 5—figure supplement 2
Simultaneous recording of multiple neurons.

(A and B) Cytoplasmic AIA GCaMP5A and nuclear AWA GCaMP6s and ASK GCaMP6s responses to 10 s pulses of 1.15 µM (A) or 11.5 nM (B) diacetyl, with all three neurons recorded simultaneously in the same …

Figure 5—figure supplement 3
Controls and heat maps for isoamyl alcohol stimulation.

(A – C) Magnitude of individual AWC (A), AWA (B), and ASK (C) responses to buffer (0), 0.9 µM, 9 µM, and 9 µM isoamyl alcohol shown in Figure 5E–G. Boxes show median and interquartile range. (D – F) …

Figure 6 with 1 supplement
AIA neurons are bistable and act as a nonlinear AND-gate.

(A) Representative example of membrane potential dynamics induced by current injection steps in current-clamped AIA neurons (n=45 AIA neurons recorded, all showing bimodal dynamics). Top, current …

Figure 6—figure supplement 1
Current-voltage relationship in AIA.

(A) Representative example of whole-cell current traces induced by a series of voltage steps in voltage-clamped AIA neuron. Top, voltage step protocol: a series of 0.5 s square steps starting at …

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional
information
Strain, strain background (Caenorhabditis elegans N2, hermaphrodite)AWA::GCaMP2.2bDOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX14647See Figure 1, Figure 1—figure supplements 1, Figure 3, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)AWA::Chrimson; AWA::GCaMP2.2bDOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX16573See Figure 1, Figure 1—figure supplements 1, 3, Figure 3, Figure 3—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AIA::GCaMP5ADOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX15257See Figure 1, Figure 1—figure supplements 23Figure 3—figure supplement 1, Figure 5, Figure 4—figure supplements 2, Figure 5—figure supplement 3, Figure 6, Figure 6—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWA::Chrimson; AIA::GCaMP5ADOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX16561See Figure 1, Figure 1—figure supplements 23Figure 2—figure supplement 1, Figure 3, Figure 3—figure supplement 1, Figure 4, Figure 4—figure supplements 1, 2, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)odr-7; AIA::GCaMP5ADOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX16171See Figure 2, Figure 5, Figure 4—figure supplement 2, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)odr-10; AIA::GCaMP5ADOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX16170See Figure 2, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)AWA::TeTx; AIA::GCaMP5Athis paperID_BargmannDatabase:CX16584See Figure 2, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)AWA::TeTx; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17519See Figure 2—figure supplement 1Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-7(e5); AIA::GCaMP5Athis paperID_Bargmann
Database:CX18039
See Figure 2, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-9(fc16); AIA::GCaMP5Athis paperID_BargmannDatabase:CX16980See Figure 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-9 unc-7; AIA::GCaMP5Athis paperID_BargmannDatabase:CX16979See Figure 2, Figure 2—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-9 unc-7; AWA,AIA::unc-9(-); AIA::GCaMP5Athis paperID_Bargmann
Database:CX18040
See Figure 2, Figure 2—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-9 unc-7; AWA,AIA::unc-9(+); AIA::GCaMP5Athis paperID_Bargmann
Database:CX18041
See Figure 2, Figure 2—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-7 unc-9; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17320See Figure 2, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)AIA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17432See Figure 2, Figure 2—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-7 unc-9; AIA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17895See Figure 2
Strain, strain background (C. elegans N2, hermaphrodite)AIA::Chrimson; AWA::GCaMP2.2bthis paperID_BargmannDatabase:CX17464See Figure 2, Figure 2—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-7 unc-9; AIA::Chrimson; AWA::GCaMP2.2bthis paperID_BargmannDatabase:CX17897See Figure 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AIA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17584See Figure 2—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AIA::Chrimson; AWA::GCaMP2.2bthis paperID_BargmannDatabase:CX17640See Figure 2—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-13; AIA::GCaMP5Athis paperID_BargmannDatabase:CX16591See Figure 3, Figure 3—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-18(e234); AIA::GCaMP5Athis paperID_BargmannDatabase:CX16412See Figure 3, Figure 3—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-13; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX16592See Figure 3, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-18(e234); AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17158See Figure 3, Figure 3—figure supplement 1, Figure 4, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-18(e81);
AWA::Chrimson; AIA::GCaMP5A
this paperID_BargmannDatabase:CX17640See Figure 3, Figure 3—figure supplement 1, Figure 4, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-13; AWA::Chrimson; AWA::GCaMP2.2bthis paperID_BargmannDatabase:CX17213See Figure 3, Figure 3—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-31; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17319See Figure 3—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17714See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; AWC,ASE,ASK,ASG::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17679See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; ASK::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17722See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; ASG::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17892See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; AWC::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17611See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)eat-4-FRT; AWC,ASE::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17723See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)che-1; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17678See Figure 4, Figure 4—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWC,ASE,ASK,ASG::nFlippase; AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17866See Figure 4, Figure 4—figure supplement 1, Figure 4—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AWC,ASE::unc-18(+); AWA::Chrimson; AIA::GCaMP5A (line A)this paperID_BargmannDatabase:CX17675See Figure 4, Figure 4—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AWC,ASE::unc-18(+); AWA::Chrimson; AIA::GCaMP5A (line B)this paperID_BargmannDatabase:CX17676See Figure 4, Figure 4—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AWC,ASE::unc-18(-); AWA::Chrimson; AIA::GCaMP5Athis paperID_BargmannDatabase:CX17677See Figure 4, Figure 4—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)ASK::GCaMP5ADOI: 10.1016/j.neuron.2019.01.053ID_BargmannDatabase:CX17590See Figure 5, Figure 5—figure supplement 1, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; ASK::GCaMP5Athis paperID_BargmannDatabase:CX17724See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)odr-10; ASK::GCaMP5Athis paperID_BargmannDatabase:CX17867See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWC::GCaMP5Athis paperID_BargmannDatabase:CX17520See Figure 5, Figure 5—figure supplement 1, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; AWC::GCaMP5Athis paperID_BargmannDatabase:CX17636See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)odr-10; AWC::GCaMP5Athis paperID_BargmannDatabase:CX17606See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)ASE::GCaMP3this paperID_BargmannDatabase:CX14571See Figure 5, Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)unc-18; ASE::GCaMP3this paperID_BargmannDatabase:CX17638See Figure 5, Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)odr-10; ASE::GCaMP3this paperID_BargmannDatabase:CX16497See Figure 5, Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)ASH::GCaMP3DOI: 10.1016/j.neuron.2013.11.020ID_BargmannDatabase:CX10979See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWA::Chrimson; ASK::GCaMP5Athis paperID_BargmannDatabase:CX17751See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWA::Chrimson; AWC::GCaMP5Athis paperID_BargmannDatabase:CX17521See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AWA::Chrimson; ASE::GCaMP3this paperID_BargmannDatabase:CX17392See Figure 5—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)ceh-36; AIA::GCaMP5ADOI: 10.1016/j.celrep.2015.08.032ID_BargmannDatabase:CX16169See Figure 5, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)odr-7 ceh-36; AIA::GCaMP5ADOI:10.1016/j.celrep.2015.08.032See Figure 5, Figure 5—figure supplement 3
Strain, strain background (C. elegans N2, hermaphrodite)ASK,AWA::GCaMP6s; AIA::GCaMP5Athis paperID_BargmannDatabase:CX18038See Figure 5—figure supplement 2
Strain, strain background (C. elegans N2, hermaphrodite)AIA::GFPthis paperID_BargmannDatabase:CX8293See Figure 6Figure 6—figure supplement 1
Strain, strain background (C. elegans N2, hermaphrodite)AIA::GCaMP5Athis paperID_BargmannDatabase:CX16976See Figure 6, Figure 6—figure supplement 1
Chemical compound, drug(-)-tetramisole hydrochlorideSigmaL9756CAS 16595-80-5
Chemical compound, drugPolydimethylsiloxane (PDMS)Sigma7610369:1 base:curing agent, Sylgard 184
Software, algorithmImageJImageJ (http://imagej.nih.gov/ij/)RRID:SCR_003070Version 1.52a
Software, algorithmGraphPad PrismGraphPad Prism (https://graphpad.com)RRID:SCR_002798Version 8
Software, algorithmMatlabMathWorks (https://www.mathworks.com/)RRID:SCR_001622Versions R2013b and R2015a
Software, algorithmMetamorphMolecular Devices (https://www.moleculardevices.com)RRID:SCR_002368Versions 7.7.6 and 7.7.8
Software, algrorithmanalysis codethis paperSee Source code 1

Additional files

Source code 1

Source code for data analysis.

https://cdn.elifesciences.org/articles/50566/elife-50566-code1-v2.m
Supplementary file 1

Presynaptic partners of AIA.

Both Chen et al. (2006) and Cook et al. (2019) are based on same collection of serial-section electron micrographs from White et al. (1986). Neurotransmitter information is based on Pereira et al. (2015).

https://cdn.elifesciences.org/articles/50566/elife-50566-supp1-v2.docx
Supplementary file 2

Cumulative response time profiles.

Kolmogorov-Smirnov test statistics and sample sizes for all cumulative response time profiles presented, calculated for full 10 s stimulus pulse. Italics indicate non-WT genetic backgrounds. D test represents the maximum effect size across the distributions. p-values below 0.05 are bolded for emphasis.

https://cdn.elifesciences.org/articles/50566/elife-50566-supp2-v2.docx
Supplementary file 3

Calcium response magnitude comparisons.

Magnitudes of responses to various stimuli, with either an unpaired t-test (if the number of comparisons is one) or an ordinary one-way ANOVA with Dunnett’s multiple comparisons test (if the number of comparisons exceeds one); * indicates paired t-test. Bolded genotype or stimulus indicates the control group used for comparisons. Italics indicate non-wildtype genetic background. p-values below 0.05 are bolded for emphasis.

https://cdn.elifesciences.org/articles/50566/elife-50566-supp3-v2.docx
Supplementary file 4

Calcium rise time comparisons.

Rise times (t66-t33) of responses to various stimuli, with either an ordinary one-way ANOVA with Dunnett’s multiple comparisons test. Bolded genotype or stimulus indicates the control group used for comparisons. Italics indicate non-wildtype genetic background.

https://cdn.elifesciences.org/articles/50566/elife-50566-supp4-v2.docx
Supplementary file 5

Strain list.

https://cdn.elifesciences.org/articles/50566/elife-50566-supp5-v2.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/50566/elife-50566-transrepform-v2.docx

Download links