Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii

  1. Alex Hunt
  2. Matthew Robert Geoffrey Russell
  3. Jeanette Wagener
  4. Robyn Kent
  5. Romain Carmeille
  6. Christopher J Peddie
  7. Lucy Collinson
  8. Aoife Heaslip
  9. Gary E Ward
  10. Moritz Treeck  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Vermont, United States
  3. University of Connecticut, United States

Abstract

Toxoplasma gondii contains a limited subset of actin binding proteins. Here we show that the putative actin regulator cyclase-associated protein (CAP) is present in two different isoforms and its deletion leads to significant defects in some but not all actin dependent processes. We observe defects in cell-cell communication, daughter cell orientation and the juxtanuclear accumulation of actin, but only modest defects in synchronicity of division and no defect in the replication of the apicoplast. 3D electron microscopy reveals that loss of CAP results in a defect in formation of a normal central residual body, but parasites remain connected within the vacuole. This dissociates synchronicity of division and parasite rosetting and reveals that establishment and maintenance of the residual body may be more complex than previously thought. These results highlight the different spatial requirements for F-actin regulation in Toxoplasma which appear to be achieved by partially overlapping functions of actin regulators.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 4, 5, 6, 8 and 10. Data Availability: Raw data for FIB SEM supporting movies will be uploaded to EMPIAR. Raw data for FIB SEM supporting movies have been deposited to EMPIAR.

Article and author information

Author details

  1. Alex Hunt

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7431-7156
  2. Matthew Robert Geoffrey Russell

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4608-7669
  3. Jeanette Wagener

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7227-4348
  4. Robyn Kent

    Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Romain Carmeille

    Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher J Peddie

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucy Collinson

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Aoife Heaslip

    Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gary E Ward

    Deaprtment of Microbiology and Molecular Genetics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Moritz Treeck

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    moritz.treeck@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9727-6657

Funding

Francis Crick Institute (FC001189)

  • Lucy Collinson

NIH Office of the Director (AI121885)

  • Romain Carmeille
  • Aoife Heaslip

NIH Office of the Director (AI139201)

  • Robyn Kent
  • Gary E Ward

Francis Crick Institute (FC001999)

  • Matthew Robert Geoffrey Russell
  • Christopher J Peddie
  • Lucy Collinson

NIH Office of the Director (AI137767)

  • Robyn Kent
  • Gary E Ward

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with UK Home Office regulations (PPL 80/2616) and approved by the ethical review panel at the Francis Crick Institute.

Copyright

© 2019, Hunt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,123
    views
  • 303
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex Hunt
  2. Matthew Robert Geoffrey Russell
  3. Jeanette Wagener
  4. Robyn Kent
  5. Romain Carmeille
  6. Christopher J Peddie
  7. Lucy Collinson
  8. Aoife Heaslip
  9. Gary E Ward
  10. Moritz Treeck
(2019)
Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii
eLife 8:e50598.
https://doi.org/10.7554/eLife.50598

Share this article

https://doi.org/10.7554/eLife.50598

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.