Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death

  1. Mai P Tran
  2. Rio Tsutsumi
  3. Joel M Erberich
  4. Kevin D Chen
  5. Michelle D Flores
  6. Kimberly L Cooper  Is a corresponding author
  1. Univeristy of California, San Diego, United States

Abstract

Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury.

Data availability

All raw images and other associated data for this manuscript, including TEM, immunofluorescence, and qRT-PCR, have been curated and deposited with Zenodo. They can be found at the object identifier https://doi.org/10.5281/zenodo.3404257.

The following data sets were generated

Article and author information

Author details

  1. Mai P Tran

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Rio Tsutsumi

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Joel M Erberich

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Kevin D Chen

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Michelle D Flores

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Kimberly L Cooper

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    For correspondence
    kcooper@ucsd.edu
    Competing interests
    Kimberly L Cooper, is on the science advisory board for Synbal, Inc, a company pursuing the use of active genetics technologies in laboratory rodents. This activity is unrelated to the work in this manuscript.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5892-8838

Funding

Pew Charitable Trusts (Pew Biomedical Scholarship)

  • Kimberly L Cooper

Kinship Foundation (Searle Scholarship)

  • Kimberly L Cooper

David and Lucile Packard Foundation (Packard Fellowships in Science and Engineering)

  • Kimberly L Cooper

National Institutes of Health (R21 AR074609-01A1)

  • Kimberly L Cooper

National Institutes of Health (T32GM724039)

  • Mai P Tran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#S13246 and S14014) of the University of California San Diego. Oversight of research using jerboas is also provided by the US Department of Agriculture (USDA). Every effort was made to minimize suffering.

Version history

  1. Received: July 28, 2019
  2. Accepted: October 1, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 14, 2019 (version 2)

Copyright

© 2019, Tran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,922
    views
  • 228
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mai P Tran
  2. Rio Tsutsumi
  3. Joel M Erberich
  4. Kevin D Chen
  5. Michelle D Flores
  6. Kimberly L Cooper
(2019)
Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death
eLife 8:e50645.
https://doi.org/10.7554/eLife.50645

Share this article

https://doi.org/10.7554/eLife.50645

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.