Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death

  1. Mai P Tran
  2. Rio Tsutsumi
  3. Joel M Erberich
  4. Kevin D Chen
  5. Michelle D Flores
  6. Kimberly L Cooper  Is a corresponding author
  1. Univeristy of California, San Diego, United States

Abstract

Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury.

Data availability

All raw images and other associated data for this manuscript, including TEM, immunofluorescence, and qRT-PCR, have been curated and deposited with Zenodo. They can be found at the object identifier https://doi.org/10.5281/zenodo.3404257.

The following data sets were generated

Article and author information

Author details

  1. Mai P Tran

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Rio Tsutsumi

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Joel M Erberich

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Kevin D Chen

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Michelle D Flores

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Kimberly L Cooper

    Division of Biological Sciences, Section of Cellular and Developmental Biology, Univeristy of California, San Diego, La Jolla, United States
    For correspondence
    kcooper@ucsd.edu
    Competing interests
    Kimberly L Cooper, is on the science advisory board for Synbal, Inc, a company pursuing the use of active genetics technologies in laboratory rodents. This activity is unrelated to the work in this manuscript.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5892-8838

Funding

Pew Charitable Trusts (Pew Biomedical Scholarship)

  • Kimberly L Cooper

Kinship Foundation (Searle Scholarship)

  • Kimberly L Cooper

David and Lucile Packard Foundation (Packard Fellowships in Science and Engineering)

  • Kimberly L Cooper

National Institutes of Health (R21 AR074609-01A1)

  • Kimberly L Cooper

National Institutes of Health (T32GM724039)

  • Mai P Tran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#S13246 and S14014) of the University of California San Diego. Oversight of research using jerboas is also provided by the US Department of Agriculture (USDA). Every effort was made to minimize suffering.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: July 28, 2019
  2. Accepted: October 1, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 14, 2019 (version 2)

Copyright

© 2019, Tran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,685
    Page views
  • 215
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mai P Tran
  2. Rio Tsutsumi
  3. Joel M Erberich
  4. Kevin D Chen
  5. Michelle D Flores
  6. Kimberly L Cooper
(2019)
Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death
eLife 8:e50645.
https://doi.org/10.7554/eLife.50645

Further reading

    1. Developmental Biology
    Jeff Jiajing Zhou, Jin Sun Cho ... Ken WY Cho
    Research Article

    Histone acetylation is a pivotal epigenetic modification that controls chromatin structure and regulates gene expression. It plays an essential role in modulating zygotic transcription and cell lineage specification of developing embryos. While the outcomes of many inductive signals have been described to require enzymatic activities of histone acetyltransferases and deacetylases (HDACs), the mechanisms by which HDACs confine the utilization of the zygotic genome remain to be elucidated. Here, we show that histone deacetylase 1 (Hdac1) progressively binds to the zygotic genome from mid blastula and onward. The recruitment of Hdac1 to the genome at blastula is instructed maternally. Cis-regulatory modules (CRMs) bound by Hdac1 possess epigenetic signatures underlying distinct functions. We highlight a dual function model of Hdac1 where Hdac1 not only represses gene expression by sustaining a histone hypoacetylation state on inactive chromatin, but also maintains gene expression through participating in dynamic histone acetylation-deacetylation cycles on active chromatin. As a result, Hdac1 maintains differential histone acetylation states of bound CRMs between different germ layers and reinforces the transcriptional program underlying cell lineage identities, both in time and space. Taken together, our study reveals a comprehensive role for Hdac1 during early vertebrate embryogenesis.

    1. Developmental Biology
    2. Genetics and Genomics
    Vera RInaldi, Kathleen Messemer ... Oliver J Rando
    Research Article

    The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate extreme caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.