Cdc7 activates replication checkpoint by phosphorylating the Chk1 binding domain of Claspin in human cells
Abstract
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1g1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1g1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1g1plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files.Figure 1-source data 1 has been provided for Figure 1AFigure 4 -source data 1-3 have been provided for Figure 4Figure 5-figure supplement 2-source data 1 has been provided for Figure 5-figure supplement 2Figure 5-figure supplement 3-source data 1 has been provided for Figure 5-figure supplement 3BFigure 6-source data 1has been provided for Figure 6BFigure 7-source data 1 has been provided for Figure 7BFigure 7-source data 2 has been provided for Figure 7D
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (23247031)
- Hisao Masai
Japan Society for the Promotion of Science (26251004)
- Hisao Masai
Japan Society for the Promotion of Science (24114520)
- Hisao Masai
Japan Society for the Promotion of Science (25125724)
- Hisao Masai
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Yang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,656
- views
-
- 379
- downloads
-
- 37
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.
-
- Chromosomes and Gene Expression
- Structural Biology and Molecular Biophysics
Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.