Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis

  1. Youngsik Woo
  2. Soo Jeong Kim
  3. Bo Kyoung Suh
  4. Yongdo Kwak
  5. Hyun-Jin Jung
  6. Truong Thi My Nhung
  7. Dong Jin Mun
  8. Ji-Ho Hong
  9. Su-Jin Noh
  10. Seunghyun Kim
  11. Ahryoung Lee
  12. Seung Tae Baek
  13. Minh Dang Nguyen
  14. Youngshik Choe
  15. Sang Ki Park  Is a corresponding author
  1. Pohang University of Science and Technology, Republic of Korea
  2. Korea Brain Research Institute, Republic of Korea
  3. University of Calgary, Canada

Abstract

Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation of NDEL1 S332 by GSK3b. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3b to form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual phosphorylation increases the filamentous actin dynamics. Ultimately, the phosphorylation enhances both axonal and dendritic outgrowth and promotes their arborization. Together, our findings suggest the NDEL1 phosphorylation at S336/S332 by the TARA-DYRK2-GSK3b complex as a novel regulatory mechanism underlying neuronal morphogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 5, and 6.

Article and author information

Author details

  1. Youngsik Woo

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Soo Jeong Kim

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo Kyoung Suh

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Yongdo Kwak

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Hyun-Jin Jung

    Neural Development and Disease Department, Korea Brain Research Institute, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Truong Thi My Nhung

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Dong Jin Mun

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Ji-Ho Hong

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Su-Jin Noh

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Seunghyun Kim

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Ahryoung Lee

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Seung Tae Baek

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Minh Dang Nguyen

    Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Youngshik Choe

    Neural Development and Disease Department, Korea Brain Research Institute, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  15. Sang Ki Park

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    For correspondence
    skpark@postech.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1023-7864

Funding

National Research Foundation of Korea (2015M3C7A1030964)

  • Sang Ki Park

National Research Foundation of Korea (2017M3C7A1047875)

  • Sang Ki Park

National Research Foundation of Korea (2017R1A5A1015366)

  • Sang Ki Park

National Research Foundation of Korea (2017R1A2B2009031)

  • Sang Ki Park

Canadian Institutes of Health Research

  • Minh Dang Nguyen

Ministry of Science, ICT and Future Planning (19-BR-02-01)

  • Youngshik Choe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Pohang University of Science and Technology (POSTECH-2019-0024 and POSTECH-2019-0025). All experiments were carried out in accordance with the approved guidelines. All surgery was performed under ketamine/xylazine cocktail anesthesia, and every effort was made to minimize suffering.

Copyright

© 2019, Woo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,607
    views
  • 305
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Youngsik Woo
  2. Soo Jeong Kim
  3. Bo Kyoung Suh
  4. Yongdo Kwak
  5. Hyun-Jin Jung
  6. Truong Thi My Nhung
  7. Dong Jin Mun
  8. Ji-Ho Hong
  9. Su-Jin Noh
  10. Seunghyun Kim
  11. Ahryoung Lee
  12. Seung Tae Baek
  13. Minh Dang Nguyen
  14. Youngshik Choe
  15. Sang Ki Park
(2019)
Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis
eLife 8:e50850.
https://doi.org/10.7554/eLife.50850

Share this article

https://doi.org/10.7554/eLife.50850

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.