A genetic, genomic, and computational resource for exploring neural circuit function

  1. Fred P Davis  Is a corresponding author
  2. Aljoscha Nern
  3. Serge Picard
  4. Michael B Reiser
  5. Gerald M Rubin
  6. Sean R Eddy
  7. Gilbert L Henry  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.

Data availability

All raw and processed transcriptome data is available from NCBI GEO (accession GSE116969).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Fred P Davis

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    fredpdavis@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-1610
  2. Aljoscha Nern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3822-489X
  3. Serge Picard

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael B Reiser

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4108-4517
  5. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-8703
  6. Sean R Eddy

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6676-4706
  7. Gilbert L Henry

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    henry@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (Intramural Research Program)

  • Fred P Davis

Howard Hughes Medical Institute

  • Fred P Davis
  • Aljoscha Nern
  • Serge Picard
  • Michael B Reiser
  • Gerald M Rubin
  • Sean R Eddy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 9,964
    views
  • 1,086
    downloads
  • 193
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fred P Davis
  2. Aljoscha Nern
  3. Serge Picard
  4. Michael B Reiser
  5. Gerald M Rubin
  6. Sean R Eddy
  7. Gilbert L Henry
(2020)
A genetic, genomic, and computational resource for exploring neural circuit function
eLife 9:e50901.
https://doi.org/10.7554/eLife.50901

Share this article

https://doi.org/10.7554/eLife.50901

Further reading

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.