Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans

  1. Jihee Hwang
  2. Jae-Yeol Kim
  3. Cheolhee Kim
  4. Soojin Park
  5. Sungmin Joo
  6. Seong Keun Kim  Is a corresponding author
  7. Nam Ki Lee  Is a corresponding author
  1. Seoul National University, Republic of Korea
  2. National Institutes of Health, United States
  3. Daegu National Science Museum, Republic of Korea
  4. Pohang University of Science and Technology, Republic of Korea

Abstract

Deinococcus radiodurans (DR) survives in the presence of hundreds of double-stranded DNA (dsDNA) breaks by efficiently repairing such breaks. RecO, an essential protein for the extreme radioresistance of DR, is one of the major recombination mediator proteins in the RecA-loading process in the RecFOR pathway. However, how RecO participates in the RecA-loading process is still unclear. In this work, we investigated the function of drRecO using single-molecule techniques. We found that drRecO competes with the ssDNA binding protein (drSSB) for binding to the freely exposed ssDNA and efficiently displaces drSSB from ssDNA without consuming ATP. drRecO replaces drSSB and dissociates it completely from ssDNA even though drSSB binds to ssDNA approximately 300 times more strongly than drRecO does. We suggest that drRecO facilitates the loading of RecA onto drSSB-coated ssDNA by utilizing a small drSSB-free space on ssDNA generated by the fast diffusion of drSSB on ssDNA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files (459GB video images) are available upon request.

Article and author information

Author details

  1. Jihee Hwang

    Chemistry, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae-Yeol Kim

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cheolhee Kim

    Display, Daegu National Science Museum, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Soojin Park

    Chemistry, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Sungmin Joo

    Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Seong Keun Kim

    Chemistry, Seoul National University, Seoul, Republic of Korea
    For correspondence
    seongkim@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  7. Nam Ki Lee

    Chemistry, Seoul National University, Seoul, Republic of Korea
    For correspondence
    namkilee@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6597-555X

Funding

National Research Foundation of Korea (NRF-2017R1A2B3010309)

  • Nam Ki Lee

National Research Foundation of Korea (NRF-2018R1A2B2001422)

  • Seong Keun Kim

National Research Foundation of Korea (NRF-2019R1A2C2090896)

  • Nam Ki Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,693
    views
  • 241
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jihee Hwang
  2. Jae-Yeol Kim
  3. Cheolhee Kim
  4. Soojin Park
  5. Sungmin Joo
  6. Seong Keun Kim
  7. Nam Ki Lee
(2020)
Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans
eLife 9:e50945.
https://doi.org/10.7554/eLife.50945

Share this article

https://doi.org/10.7554/eLife.50945

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.