Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans

  1. Jihee Hwang
  2. Jae-Yeol Kim
  3. Cheolhee Kim
  4. Soojin Park
  5. Sungmin Joo
  6. Seong Keun Kim  Is a corresponding author
  7. Nam Ki Lee  Is a corresponding author
  1. Seoul National University, Republic of Korea
  2. National Institutes of Health, United States
  3. Daegu National Science Museum, Republic of Korea
  4. Pohang University of Science and Technology, Republic of Korea

Abstract

Deinococcus radiodurans (DR) survives in the presence of hundreds of double-stranded DNA (dsDNA) breaks by efficiently repairing such breaks. RecO, an essential protein for the extreme radioresistance of DR, is one of the major recombination mediator proteins in the RecA-loading process in the RecFOR pathway. However, how RecO participates in the RecA-loading process is still unclear. In this work, we investigated the function of drRecO using single-molecule techniques. We found that drRecO competes with the ssDNA binding protein (drSSB) for binding to the freely exposed ssDNA and efficiently displaces drSSB from ssDNA without consuming ATP. drRecO replaces drSSB and dissociates it completely from ssDNA even though drSSB binds to ssDNA approximately 300 times more strongly than drRecO does. We suggest that drRecO facilitates the loading of RecA onto drSSB-coated ssDNA by utilizing a small drSSB-free space on ssDNA generated by the fast diffusion of drSSB on ssDNA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files (459GB video images) are available upon request.

Article and author information

Author details

  1. Jihee Hwang

    Chemistry, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae-Yeol Kim

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cheolhee Kim

    Display, Daegu National Science Museum, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Soojin Park

    Chemistry, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Sungmin Joo

    Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Seong Keun Kim

    Chemistry, Seoul National University, Seoul, Republic of Korea
    For correspondence
    seongkim@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  7. Nam Ki Lee

    Chemistry, Seoul National University, Seoul, Republic of Korea
    For correspondence
    namkilee@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6597-555X

Funding

National Research Foundation of Korea (NRF-2017R1A2B3010309)

  • Nam Ki Lee

National Research Foundation of Korea (NRF-2018R1A2B2001422)

  • Seong Keun Kim

National Research Foundation of Korea (NRF-2019R1A2C2090896)

  • Nam Ki Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,777
    views
  • 246
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jihee Hwang
  2. Jae-Yeol Kim
  3. Cheolhee Kim
  4. Soojin Park
  5. Sungmin Joo
  6. Seong Keun Kim
  7. Nam Ki Lee
(2020)
Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans
eLife 9:e50945.
https://doi.org/10.7554/eLife.50945

Share this article

https://doi.org/10.7554/eLife.50945

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.