Mechanisms that allow cortical preparatory activity without inappropriate movement

  1. Timothy R Darlington  Is a corresponding author
  2. Stephen G Lisberger
  1. Duke University School of Medicine, United States

Abstract

We reveal a novel mechanism that explains how preparatory activity can evolve in motor-related cortical areas without prematurely inducing movement. The smooth eye movement region of the frontal eye fields (FEFSEM) is a critical node in the neural circuit controlling smooth pursuit eye movement. Preparatory activity evolves in the monkey FEFSEM during fixation in parallel with an objective measure of visual-motor gain. We propose that the use of FEFSEM output as a gain signal rather than a movement command allows for preparation to progress in pursuit without causing movement. We also show that preparatory modulation of firing rate in FEFSEM predicts movement, providing evidence against the 'movement-null' space hypothesis as an explanation of how preparatory activity can progress without movement. Finally, there is a partial reorganization of FEFSEM population activity between preparation and movement that would allow for a directionally non-specific component of preparatory visual-motor gain enhancement in pursuit.

Data availability

Source data have been provided for each figure.

Article and author information

Author details

  1. Timothy R Darlington

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    For correspondence
    trd12@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5534-7552
  2. Stephen G Lisberger

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7859-4361

Funding

National Institutes of Health (R01-EY027373)

  • Stephen G Lisberger

National Institutes of Health (F30-EY027684)

  • Timothy R Darlington

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kunlin Wei, Peking University, China

Ethics

Animal experimentation: All procedures received prior approval by Duke's Institutional Animal Care and Use Committee (protocol A085-18-04) and were in compliance with the National Institutes of Health's Guide for the Care and Use of Laboratory Animals.

Version history

  1. Received: August 8, 2019
  2. Accepted: February 20, 2020
  3. Accepted Manuscript published: February 21, 2020 (version 1)
  4. Version of Record published: March 6, 2020 (version 2)

Copyright

© 2020, Darlington & Lisberger

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,038
    views
  • 236
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy R Darlington
  2. Stephen G Lisberger
(2020)
Mechanisms that allow cortical preparatory activity without inappropriate movement
eLife 9:e50962.
https://doi.org/10.7554/eLife.50962

Share this article

https://doi.org/10.7554/eLife.50962

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.