Delta-like 1 and Delta-like 4 differently require their extracellular domains for triggering Notch signaling in mice

  1. Ken-ichi Hirano
  2. Akiko Suganami
  3. Yutaka Tamura
  4. Hideo Yagita
  5. Sonoko Habu
  6. Motoo Kitagawa
  7. Takehito Sato
  8. Katsuto Hozumi  Is a corresponding author
  1. Tokai University School of Medicine, Japan
  2. Chiba University, Japan
  3. Juntendo University School of Medicine, Japan
  4. International University of Health and Welfare School of Medicine, Japan
  5. Tokai University, Japan

Abstract

Delta-like (Dll) 1 and Dll4 differently function as Notch ligands in a context-dependent manner. As these ligands share structural properties, the molecular basis for their functional difference is poorly understood. Here, we investigated the superiority of Dll4 over Dll1 with respect to induction of T cell development using a domain-swapping approach in mice. The DOS motif, shared by Notch ligands—except Dll4—contributes to enhancing the activity of Dll for signal transduction. The module at the N-terminus of Notch ligand (MNNL) of Dll4 is inherently advantageous over Dll1. Molecular dynamic simulation revealed that the loop structure in MNNL domain of Dll1 contains unique proline residues with limited range of motion. The Dll4 mutant with Dll1-derived proline residues showed reduced activity. These results suggest that the loop structure—present within the MNNL domain—with a wide range of motion ensures the superiority of Dll4 and uniquely contributes to the triggering of Notch signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 6.

The following previously published data sets were used

Article and author information

Author details

  1. Ken-ichi Hirano

    Department of Immunology, Tokai University School of Medicine, Isehara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Akiko Suganami

    Department of Bioinformatics, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yutaka Tamura

    Department of Bioinformatics, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hideo Yagita

    Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Sonoko Habu

    Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Motoo Kitagawa

    Department of Biochemistry, International University of Health and Welfare School of Medicine, Narita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Takehito Sato

    Department of Immunology, Tokai University, Isehara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Katsuto Hozumi

    Department of Immunology, Tokai University, Isehara, Japan
    For correspondence
    hozumi@is.icc.u-tokai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7685-6927

Funding

Japan Society for the Promotion of Science (16K08848)

  • Katsuto Hozumi

Ministry of Education, Culture, Sports, Science, and Technology (22021040)

  • Katsuto Hozumi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All animal experiments were performed under protocols approved by the Animal Experimentation Committee of Tokai University (Approval No.: 165015, 171002, 182026, 193040), which is further monitored by the Animal Experimentation Evaluation Committee of Tokai University with researcher for Humanities/Sociology and external expert.

Copyright

© 2020, Hirano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,394
    views
  • 299
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ken-ichi Hirano
  2. Akiko Suganami
  3. Yutaka Tamura
  4. Hideo Yagita
  5. Sonoko Habu
  6. Motoo Kitagawa
  7. Takehito Sato
  8. Katsuto Hozumi
(2020)
Delta-like 1 and Delta-like 4 differently require their extracellular domains for triggering Notch signaling in mice
eLife 9:e50979.
https://doi.org/10.7554/eLife.50979

Share this article

https://doi.org/10.7554/eLife.50979

Further reading

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.