1. Immunology and Inflammation
Download icon

Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation

  1. Atiqur Rahman
  2. Katherine M Henry
  3. Kimberly D Herman
  4. Alfred A R Thompson
  5. Hannah M Isles
  6. Claudia Tulotta
  7. David Sammut
  8. Julien JY Rougeot
  9. Nika Khoshaein
  10. Abigail E Reese
  11. Kathryn Higgins
  12. Caroline Tabor
  13. Ian Sabroe
  14. William J Zuercher
  15. Caroline O Savage
  16. Annemarie H Meijer
  17. Moira KB Whyte
  18. David H Dockrell
  19. Stephen A Renshaw
  20. Lynne R Prince  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. Leiden University, Netherlands
  3. University of North Carolina at Chapel Hill, United States
  4. GlaxoSmithKline Research and Development Ltd, United Kingdom
  5. University of Edinburgh, United Kingdom
Research Article
  • Cited 9
  • Views 3,044
  • Annotations
Cite this article as: eLife 2019;8:e50990 doi: 10.7554/eLife.50990

Abstract

Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Atiqur Rahman

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine M Henry

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0554-2063
  3. Kimberly D Herman

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfred A R Thompson

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0717-4551
  5. Hannah M Isles

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Claudia Tulotta

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David Sammut

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Julien JY Rougeot

    Institute of Biology, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Nika Khoshaein

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Abigail E Reese

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Kathryn Higgins

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Caroline Tabor

    The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ian Sabroe

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. William J Zuercher

    UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Caroline O Savage

    Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd, Stevenage, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Annemarie H Meijer

    Institute of Biology, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  17. Moira KB Whyte

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. David H Dockrell

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Stephen A Renshaw

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1790-1641
  20. Lynne R Prince

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    L.r.prince@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6133-9372

Funding

Commonwealth Foundation

  • Atiqur Rahman

Medical Research Council (MR/M004864/1)

  • Stephen A Renshaw

Medical Research Council (G0700091)

  • Stephen A Renshaw

European Commission (PITG-GA-2011-289209)

  • Julien JY Rougeot
  • Annemarie H Meijer

SGC

  • William J Zuercher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish were raised and maintained according to standard protocols in UK Home Office approved aquaria in the Bateson Centre at the University of Sheffield, according to institutional guidelines. All work involving mice was performed in accordance with the Animal (Scientific procedures) Act 1986 and has been approved by the Animal welfare and ethical review body at University of Sheffield. Work was carried out under procedure project license 40/3726. All animals were checked prior to the start of experiments by competent personal licensees (PIL), and were deemed to be fit and well before the start of experiments.

Human subjects: Peripheral blood of healthy subjects and COPD patients was taken following informed consent and in compliance with the guidelines of the South Sheffield Research Ethics Committee (for young healthy subjects; reference number: STH13927) and the National Research Ethics Service (NRES) Committee Yorkshire and the Humber (for COPD and age-matched healthy subjects; reference number: 10/H1016/25).

Reviewing Editor

  1. Jody Rosenblatt, King's College London, United Kingdom

Publication history

  1. Received: August 9, 2019
  2. Accepted: October 15, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 8, 2019 (version 2)

Copyright

© 2019, Rahman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,044
    Page views
  • 448
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Meghan E Garrett et al.
    Research Article

    Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal.

    Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions we determined potential sites of escape by comparing antibody binding of peptides containing wildtype residues versus peptides containing a mutant residue.

    Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination.

    Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge, they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level.

    Funding: This work was supported by NIH grants AI138709 (PI Overbaugh) and AI146028 (PI Matsen). Julie Overbaugh received support as the Endowed Chair for Graduate Education (FHCRC). The research of Frederick Matsen was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation. Scientific Computing Infrastructure at Fred Hutch was funded by ORIP grant S10OD028685.

    1. Cell Biology
    2. Immunology and Inflammation
    Manuela Ecker et al.
    Research Article Updated

    T cell activation requires engagement of a cognate antigen by the T cell receptor (TCR) and the co-stimulatory signal of CD28. Both TCR and CD28 aggregate into clusters at the plasma membrane of activated T cells. While the role of TCR clustering in T cell activation has been extensively investigated, little is known about how CD28 clustering contributes to CD28 signalling. Here, we report that upon CD28 triggering, the BAR-domain protein sorting nexin 9 (SNX9) is recruited to CD28 clusters at the immunological synapse. Using three-dimensional correlative light and electron microscopy, we show that SNX9 generates membrane tubulation out of CD28 clusters. Our data further reveal that CD28 clusters are in fact dynamic structures and that SNX9 regulates their stability as well as CD28 phosphorylation and the resulting production of the cytokine IL-2. In summary, our work suggests a model in which SNX9-mediated tubulation generates a membrane environment that promotes CD28 triggering and downstream signalling events.