Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation

  1. Atiqur Rahman
  2. Katherine M Henry
  3. Kimberly D Herman
  4. Alfred A R Thompson
  5. Hannah M Isles
  6. Claudia Tulotta
  7. David Sammut
  8. Julien JY Rougeot
  9. Nika Khoshaein
  10. Abigail E Reese
  11. Kathryn Higgins
  12. Caroline Tabor
  13. Ian Sabroe
  14. William J Zuercher
  15. Caroline O Savage
  16. Annemarie H Meijer
  17. Moira KB Whyte
  18. David H Dockrell
  19. Stephen A Renshaw
  20. Lynne R Prince  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. Leiden University, Netherlands
  3. University of North Carolina at Chapel Hill, United States
  4. GlaxoSmithKline Research and Development Ltd, United Kingdom
  5. University of Edinburgh, United Kingdom

Abstract

Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Atiqur Rahman

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine M Henry

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0554-2063
  3. Kimberly D Herman

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfred A R Thompson

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0717-4551
  5. Hannah M Isles

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Claudia Tulotta

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David Sammut

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Julien JY Rougeot

    Institute of Biology, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Nika Khoshaein

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Abigail E Reese

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Kathryn Higgins

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Caroline Tabor

    The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ian Sabroe

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. William J Zuercher

    UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Caroline O Savage

    Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd, Stevenage, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Annemarie H Meijer

    Institute of Biology, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  17. Moira KB Whyte

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. David H Dockrell

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Stephen A Renshaw

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1790-1641
  20. Lynne R Prince

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    L.r.prince@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6133-9372

Funding

Commonwealth Foundation

  • Atiqur Rahman

Medical Research Council (MR/M004864/1)

  • Stephen A Renshaw

Medical Research Council (G0700091)

  • Stephen A Renshaw

European Commission (PITG-GA-2011-289209)

  • Julien JY Rougeot
  • Annemarie H Meijer

SGC

  • William J Zuercher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jody Rosenblatt, King's College London, United Kingdom

Ethics

Animal experimentation: Zebrafish were raised and maintained according to standard protocols in UK Home Office approved aquaria in the Bateson Centre at the University of Sheffield, according to institutional guidelines. All work involving mice was performed in accordance with the Animal (Scientific procedures) Act 1986 and has been approved by the Animal welfare and ethical review body at University of Sheffield. Work was carried out under procedure project license 40/3726. All animals were checked prior to the start of experiments by competent personal licensees (PIL), and were deemed to be fit and well before the start of experiments.

Human subjects: Peripheral blood of healthy subjects and COPD patients was taken following informed consent and in compliance with the guidelines of the South Sheffield Research Ethics Committee (for young healthy subjects; reference number: STH13927) and the National Research Ethics Service (NRES) Committee Yorkshire and the Humber (for COPD and age-matched healthy subjects; reference number: 10/H1016/25).

Version history

  1. Received: August 9, 2019
  2. Accepted: October 15, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 8, 2019 (version 2)

Copyright

© 2019, Rahman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,588
    views
  • 512
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Atiqur Rahman
  2. Katherine M Henry
  3. Kimberly D Herman
  4. Alfred A R Thompson
  5. Hannah M Isles
  6. Claudia Tulotta
  7. David Sammut
  8. Julien JY Rougeot
  9. Nika Khoshaein
  10. Abigail E Reese
  11. Kathryn Higgins
  12. Caroline Tabor
  13. Ian Sabroe
  14. William J Zuercher
  15. Caroline O Savage
  16. Annemarie H Meijer
  17. Moira KB Whyte
  18. David H Dockrell
  19. Stephen A Renshaw
  20. Lynne R Prince
(2019)
Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation
eLife 8:e50990.
https://doi.org/10.7554/eLife.50990

Share this article

https://doi.org/10.7554/eLife.50990

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.