A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells

  1. Brian L Hua
  2. Florine EM Scholte
  3. Valerie Ohlendorf
  4. Anne Kopp
  5. Marco Marklewitz
  6. Christian Drosten
  7. Stuart T Nichol
  8. Christina Spiropoulou
  9. Sandra Junglen  Is a corresponding author
  10. Éric Bergeron  Is a corresponding author
  1. Centers for Disease Control and Prevention, United States
  2. Charité-Universitätsmedizin Berlin, Germany
  3. Charité - Universitätsmedizin Berlin, Germany
  4. Charité Universitätsmedizin, Germany

Abstract

Crimean-Congo Hemorrhagic Fever (CCHF) is the most widely distributed tick-borne viral infection in the world. Strikingly, reported mortality rates for CCHF are extremely variable, ranging from 5 to 80% (1). CCHF virus (CCHFV, Nairoviridae) exhibits extensive genomic sequence diversity across strains (2, 3). It is currently unknown if genomic diversity is a factor contributing to variation in its pathogenicity. We obtained complete genome sequences of CCHFV directly from the tick reservoir. These new strains belong to a solitary lineage named Europe 2 that is circumstantially reputed to be less pathogenic than the epidemic strains from Europe 1 lineage. We identified a single tick-specific amino acid variant in the viral glycoprotein region that dramatically reduces its fusion activity in human cells, providing evidence that a GPC variant, present in ticks, have severely impaired function in human cells.

Data availability

All sequencing data have been deposited in GB under accession codes MK299338, MK299339, MK299340, MK299341, MK299342, MK299343, MK299344, MK299345 and MK299346

Article and author information

Author details

  1. Brian L Hua

    Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-3399
  2. Florine EM Scholte

    Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valerie Ohlendorf

    Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Kopp

    Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marco Marklewitz

    Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1828-8770
  6. Christian Drosten

    Institute of Virology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Stuart T Nichol

    Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christina Spiropoulou

    Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8406-3161
  9. Sandra Junglen

    Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    sandra.junglen@charite.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Éric Bergeron

    Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, United States
    For correspondence
    ebergeron@cdc.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3398-8628

Funding

American Society for Microbiology

  • Brian L Hua

Centers for Disease Control and Prevention

  • Stuart T Nichol
  • Christina Spiropoulou
  • Éric Bergeron

Federal Ministry of Education and Research (01KI1716)

  • Sandra Junglen

German Center for Infection Research (TTU 01.801)

  • Christian Drosten

National Institutes of Health (R01AI109008)

  • Éric Bergeron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara L Sawyer, University of Colorado Boulder, United States

Version history

  1. Received: August 9, 2019
  2. Accepted: October 8, 2020
  3. Accepted Manuscript published: October 21, 2020 (version 1)
  4. Version of Record published: November 9, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,961
    views
  • 267
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian L Hua
  2. Florine EM Scholte
  3. Valerie Ohlendorf
  4. Anne Kopp
  5. Marco Marklewitz
  6. Christian Drosten
  7. Stuart T Nichol
  8. Christina Spiropoulou
  9. Sandra Junglen
  10. Éric Bergeron
(2020)
A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells
eLife 9:e50999.
https://doi.org/10.7554/eLife.50999

Share this article

https://doi.org/10.7554/eLife.50999

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.