1. Computational and Systems Biology
Download icon

Hidden long-range memories of growth and cycle speed correlate cell cycles in lineage trees

  1. Erika E Kuchen
  2. Nils B Becker
  3. Nina Claudino
  4. Thomas Höfer  Is a corresponding author
  1. German Cancer Research Center (DKFZ), Germany
Research Article
  • Cited 0
  • Views 1,048
  • Annotations
Cite this article as: eLife 2020;9:e51002 doi: 10.7554/eLife.51002

Abstract

Cell heterogeneity may be caused by stochastic or deterministic effects. The inheritance of regulators through cell division is a key deterministic force, but identifying inheritance effects in a systematic manner has been challenging. Here we measure and analyze cell cycles in deep lineage trees of human cancer cells and mouse embryonic stem cells and develop a statistical framework to infer underlying rules of inheritance. The observed long-range intra-generational correlations in cell-cycle duration, up to second cousins, seem paradoxical because ancestral correlations decay rapidly. However, this correlation pattern is naturally explained by the inheritance of both cell size and cell-cycle speed over several generations, provided that cell growth and division are coupled through a minimum-size checkpoint. This model correctly predicts the effects of inhibiting cell growth or cycle progression. In sum, we show how fluctuations of cell cycles across lineage trees help understand the coordination of cell growth and division.

Article and author information

Author details

  1. Erika E Kuchen

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nils B Becker

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nina Claudino

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Höfer

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    For correspondence
    t.hoefer@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3560-8780

Funding

Bundesministerium für Bildung und Forschung (0316076A)

  • Thomas Höfer

Bundesministerium für Bildung und Forschung (01ZX1307)

  • Thomas Höfer

Bundesministerium für Bildung und Forschung (031L0087A)

  • Thomas Höfer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: August 10, 2019
  2. Accepted: January 22, 2020
  3. Accepted Manuscript published: January 23, 2020 (version 1)
  4. Version of Record published: February 13, 2020 (version 2)

Copyright

© 2020, Kuchen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,048
    Page views
  • 191
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Ran Liu et al.
    Research Article

    Sepsis is not a monolithic disease, but a loose collection of symptoms with diverse outcomes. Thus, stratification and subtyping of sepsis patients is of great importance. We examine the temporal evolution of patient state using our previously-published method for computing risk of transition from sepsis into septic shock. Risk trajectories diverge into four clusters following early prediction of septic shock, stratifying by outcome: the highest-risk and lowest-risk groups have a 76.5% and 10.4% prevalence of septic shock, and 43% and 18% mortality, respectively. These clusters differ also in treatments received and median time to shock onset. Analyses reveal the existence of a rapid (30–60 min) transition in risk at the time of threshold crossing. We hypothesize that this transition occurs as a result of the failure of compensatory biological systems to cope with infection, resulting in a bifurcation of low to high risk. Such a collapse, we believe, represents the true onset of septic shock. Thus, this rapid elevation in risk represents a potential new data-driven definition of septic shock.

    1. Computational and Systems Biology
    Md Zulfikar Ali et al.
    Research Article Updated

    Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its target genes have inherent asymmetry in regulation, even when their promoters are identical; the TF gene being more repressed than its targets. The magnitude of asymmetry depends on network features such as network size and TF-binding affinities. Intriguingly, asymmetry disappears when the growth rate is too fast or too slow and is most significant for typical growth conditions. These results highlight the importance of accounting for network architecture in quantitative models of gene expression.