Hidden long-range memories of growth and cycle speed correlate cell cycles in lineage trees

  1. Erika E Kuchen
  2. Nils B Becker
  3. Nina Claudino
  4. Thomas Höfer  Is a corresponding author
  1. German Cancer Research Center (DKFZ), Germany

Abstract

Cell heterogeneity may be caused by stochastic or deterministic effects. The inheritance of regulators through cell division is a key deterministic force, but identifying inheritance effects in a systematic manner has been challenging. Here we measure and analyze cell cycles in deep lineage trees of human cancer cells and mouse embryonic stem cells and develop a statistical framework to infer underlying rules of inheritance. The observed long-range intra-generational correlations in cell-cycle duration, up to second cousins, seem paradoxical because ancestral correlations decay rapidly. However, this correlation pattern is naturally explained by the inheritance of both cell size and cell-cycle speed over several generations, provided that cell growth and division are coupled through a minimum-size checkpoint. This model correctly predicts the effects of inhibiting cell growth or cycle progression. In sum, we show how fluctuations of cell cycles across lineage trees help understand the coordination of cell growth and division.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 4.

The following previously published data sets were used

Article and author information

Author details

  1. Erika E Kuchen

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nils B Becker

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nina Claudino

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Höfer

    Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    For correspondence
    t.hoefer@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3560-8780

Funding

Bundesministerium für Bildung und Forschung (0316076A)

  • Thomas Höfer

Bundesministerium für Bildung und Forschung (01ZX1307)

  • Thomas Höfer

Bundesministerium für Bildung und Forschung (031L0087A)

  • Thomas Höfer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: August 10, 2019
  2. Accepted: January 22, 2020
  3. Accepted Manuscript published: January 23, 2020 (version 1)
  4. Version of Record published: February 13, 2020 (version 2)

Copyright

© 2020, Kuchen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,809
    Page views
  • 285
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika E Kuchen
  2. Nils B Becker
  3. Nina Claudino
  4. Thomas Höfer
(2020)
Hidden long-range memories of growth and cycle speed correlate cell cycles in lineage trees
eLife 9:e51002.
https://doi.org/10.7554/eLife.51002

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Aaron W Jurrjens, Marcus M Seldin ... Anna C Calkin
    Review Article

    Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.

    1. Computational and Systems Biology
    Theo Sanderson, Maxwell L Bileschi ... Lucy J Colwell
    Tools and Resources Updated

    Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions – Enzyme Commission (EC) numbers and Gene Ontology (GO) terms – directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user’s personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.