Rank orders and signed interactions in evolutionary biology

  1. Kristina Crona  Is a corresponding author
  1. American University, United States

Abstract

Rank orders have been studied in evolutionary biology for almost a hundred years. Constraints on the order in which mutations accumulate are known from cancer drug treatment, and order constraints for species invasions are important in ecology. However, current theory on rank orders in biology is somewhat fragmented. Here we show how our previous work on inferring genetic interactions from comparative fitness data (Crona et al., 2017) is related to an influential approach to rank orders based on sign epistasis. Our approach depends on order perturbations that indicate interactions. We apply our results to malaria parasites and find that order perturbations beyond sign epistasis are prevalent for the antimalarial drug resistance landscape. This finding agrees with the observation that reversed evolution back to the ancestral type is difficult. Another application concerns bacteria adapting to a methanol environment.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kristina Crona

    Mathematics and Statistics, American University, Washington DC, United States
    For correspondence
    kcrona@american.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1819-474X

Funding

No external funding was received for this work

Reviewing Editor

  1. Joachim Krug, University of Cologne, Germany

Version history

  1. Received: August 14, 2019
  2. Accepted: January 5, 2020
  3. Accepted Manuscript published: January 14, 2020 (version 1)
  4. Version of Record published: February 4, 2020 (version 2)

Copyright

© 2020, Crona

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,409
    views
  • 147
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristina Crona
(2020)
Rank orders and signed interactions in evolutionary biology
eLife 9:e51004.
https://doi.org/10.7554/eLife.51004

Share this article

https://doi.org/10.7554/eLife.51004

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.

    1. Evolutionary Biology
    Erica R Kwiatkowski, Patrick Emery
    Insight

    Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.