1. Immunology and Inflammation
Download icon

A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert  Is a corresponding author
  8. Rachel R Caspi  Is a corresponding author
  1. University of California, Berkeley, United States
  2. NIH, United States
Research Article
  • Cited 3
  • Views 745
  • Annotations
Cite this article as: eLife 2020;9:e51102 doi: 10.7554/eLife.51102

Abstract

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.

Data availability

All data needed to evaluate the conclusions of the paper are present in the main text and Supplementary Materials.

Article and author information

Author details

  1. Jessica Wei

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7329-2812
  2. Mary J Mattapallil

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Reiko Horai

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yingyos Jittayasothorn

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnav P Modi

    School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. H Nida Sen

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karsten Gronert

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    For correspondence
    kgronert@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5329-7907
  8. Rachel R Caspi

    Lab. Immunol., NEI, NIH, Bethesda, United States
    For correspondence
    caspir@nei.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (EY026082)

  • Karsten Gronert

National Eye Institute (EY000184)

  • Rachel R Caspi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care and Use program at University of California, Berkeley, and the National Eye Institute at the National Institutes of Health.(protocol AUP-2016-04-8691-1),

Human subjects: Male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior segment uveitis were enrolled in the National Eye Institute protocol number 16-EI-0046. Healthy controls were NIH blood bank donors of both sexes with a similar age range. Serum samples were obtained from male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior uveitis, healthy controls were NIH blood bank donors of both sexes with a similar age range whose samples were de-identified and sent to the lab. Patients were enrolled from May 2017 to July 2018 under a clinical research protocol 428 (NCT02656381), approved by the institutional review board of the National Institutes of Health. Informed consent (including publishing language as required by NIH IRB) were obtained from all subjects. The study adhered to the tenets of the Declaration of Helsinki.

Reviewing Editor

  1. Lois Smith, Boston Children's Hospital/Harvard Medical School, United States

Publication history

  1. Received: August 15, 2019
  2. Accepted: February 29, 2020
  3. Accepted Manuscript published: March 2, 2020 (version 1)
  4. Version of Record published: March 10, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 745
    Page views
  • 94
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Yujiao He et al.
    Research Article

    The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1 and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following TCR stimulation, protein kinase C-θ (PKC-θ) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-θ to the NPC, where it interacts with and phosphorylates RanGAP1 on Ser504 and Ser506. RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-θ as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC subcomplex.

    1. Immunology and Inflammation
    Shuaijie Dou et al.
    Research Article

    Nuclear Factor 90 (NF90) is a novel virus sensor that serves to initiate antiviral innate immunity by triggering the stress granules (SGs) formation. However, the regulation of the NF90-SGs pathway remain largely unclear. We found that Tim-3, an immune checkpoint inhibitor, promotes the ubiquitination and degradation of NF90 and inhibits NF90-SGs mediated antiviral immunity. Vesicular Stomatitis Virus (VSV) infection induces the up-regulation and activation of Tim-3 in macrophages which in turn recruited the E3 ubiquitin ligase TRIM47 to the zinc finger domain of NF90 and initiated a proteasome-dependent degradation via K48-linked ubiquitination at Lys297. Targeted inactivation of the Tim-3 enhances the NF90 downstream SGs formation by selectively increasing the phosphorylation of PKR and eIF2a, the expression of SGs markers G3BP1 and TIA-1, and protected mice from VSV challenge. These findings provide insights into the crosstalk between Tim-3 and other receptors in antiviral innate immunity and its related clinical significance.