A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert  Is a corresponding author
  8. Rachel R Caspi  Is a corresponding author
  1. University of California, Berkeley, United States
  2. NIH, United States

Abstract

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.

Data availability

All data needed to evaluate the conclusions of the paper are present in the main text and Supplementary Materials.

Article and author information

Author details

  1. Jessica Wei

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7329-2812
  2. Mary J Mattapallil

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Reiko Horai

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yingyos Jittayasothorn

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnav P Modi

    School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. H Nida Sen

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karsten Gronert

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    For correspondence
    kgronert@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5329-7907
  8. Rachel R Caspi

    Lab. Immunol., NEI, NIH, Bethesda, United States
    For correspondence
    caspir@nei.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (EY026082)

  • Karsten Gronert

National Eye Institute (EY000184)

  • Rachel R Caspi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lois Smith, Boston Children's Hospital/Harvard Medical School, United States

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care and Use program at University of California, Berkeley, and the National Eye Institute at the National Institutes of Health.(protocol AUP-2016-04-8691-1),

Human subjects: Male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior segment uveitis were enrolled in the National Eye Institute protocol number 16-EI-0046. Healthy controls were NIH blood bank donors of both sexes with a similar age range. Serum samples were obtained from male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior uveitis, healthy controls were NIH blood bank donors of both sexes with a similar age range whose samples were de-identified and sent to the lab. Patients were enrolled from May 2017 to July 2018 under a clinical research protocol 428 (NCT02656381), approved by the institutional review board of the National Institutes of Health. Informed consent (including publishing language as required by NIH IRB) were obtained from all subjects. The study adhered to the tenets of the Declaration of Helsinki.

Version history

  1. Received: August 15, 2019
  2. Accepted: February 29, 2020
  3. Accepted Manuscript published: March 2, 2020 (version 1)
  4. Version of Record published: March 10, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,082
    views
  • 135
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert
  8. Rachel R Caspi
(2020)
A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina
eLife 9:e51102.
https://doi.org/10.7554/eLife.51102

Share this article

https://doi.org/10.7554/eLife.51102

Further reading

    1. Immunology and Inflammation
    Xiaozhuo Yu, Wen Zhou ... Yanhong Ji
    Research Article

    The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2’ C-terminus absence in Tp53−/− mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.