1. Immunology and Inflammation
Download icon

A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert  Is a corresponding author
  8. Rachel R Caspi  Is a corresponding author
  1. University of California, Berkeley, United States
  2. NIH, United States
Research Article
  • Cited 4
  • Views 807
  • Annotations
Cite this article as: eLife 2020;9:e51102 doi: 10.7554/eLife.51102

Abstract

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.

Data availability

All data needed to evaluate the conclusions of the paper are present in the main text and Supplementary Materials.

Article and author information

Author details

  1. Jessica Wei

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7329-2812
  2. Mary J Mattapallil

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Reiko Horai

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yingyos Jittayasothorn

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnav P Modi

    School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. H Nida Sen

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karsten Gronert

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    For correspondence
    kgronert@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5329-7907
  8. Rachel R Caspi

    Lab. Immunol., NEI, NIH, Bethesda, United States
    For correspondence
    caspir@nei.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (EY026082)

  • Karsten Gronert

National Eye Institute (EY000184)

  • Rachel R Caspi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care and Use program at University of California, Berkeley, and the National Eye Institute at the National Institutes of Health.(protocol AUP-2016-04-8691-1),

Human subjects: Male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior segment uveitis were enrolled in the National Eye Institute protocol number 16-EI-0046. Healthy controls were NIH blood bank donors of both sexes with a similar age range. Serum samples were obtained from male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior uveitis, healthy controls were NIH blood bank donors of both sexes with a similar age range whose samples were de-identified and sent to the lab. Patients were enrolled from May 2017 to July 2018 under a clinical research protocol 428 (NCT02656381), approved by the institutional review board of the National Institutes of Health. Informed consent (including publishing language as required by NIH IRB) were obtained from all subjects. The study adhered to the tenets of the Declaration of Helsinki.

Reviewing Editor

  1. Lois Smith, Boston Children's Hospital/Harvard Medical School, United States

Publication history

  1. Received: August 15, 2019
  2. Accepted: February 29, 2020
  3. Accepted Manuscript published: March 2, 2020 (version 1)
  4. Version of Record published: March 10, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 807
    Page views
  • 100
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Srijan Seal et al.
    Review Article

    Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hao Gu et al.
    Research Article

    Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.