A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert  Is a corresponding author
  8. Rachel R Caspi  Is a corresponding author
  1. University of California, Berkeley, United States
  2. NIH, United States

Abstract

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.

Data availability

All data needed to evaluate the conclusions of the paper are present in the main text and Supplementary Materials.

Article and author information

Author details

  1. Jessica Wei

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7329-2812
  2. Mary J Mattapallil

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Reiko Horai

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yingyos Jittayasothorn

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnav P Modi

    School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. H Nida Sen

    NEI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karsten Gronert

    Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
    For correspondence
    kgronert@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5329-7907
  8. Rachel R Caspi

    Lab. Immunol., NEI, NIH, Bethesda, United States
    For correspondence
    caspir@nei.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (EY026082)

  • Karsten Gronert

National Eye Institute (EY000184)

  • Rachel R Caspi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care and Use program at University of California, Berkeley, and the National Eye Institute at the National Institutes of Health.(protocol AUP-2016-04-8691-1),

Human subjects: Male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior segment uveitis were enrolled in the National Eye Institute protocol number 16-EI-0046. Healthy controls were NIH blood bank donors of both sexes with a similar age range. Serum samples were obtained from male and female patients ages 30 - 76 with clinical diagnosis of non-infectious posterior uveitis, healthy controls were NIH blood bank donors of both sexes with a similar age range whose samples were de-identified and sent to the lab. Patients were enrolled from May 2017 to July 2018 under a clinical research protocol 428 (NCT02656381), approved by the institutional review board of the National Institutes of Health. Informed consent (including publishing language as required by NIH IRB) were obtained from all subjects. The study adhered to the tenets of the Declaration of Helsinki.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,116
    views
  • 138
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Wei
  2. Mary J Mattapallil
  3. Reiko Horai
  4. Yingyos Jittayasothorn
  5. Arnav P Modi
  6. H Nida Sen
  7. Karsten Gronert
  8. Rachel R Caspi
(2020)
A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina
eLife 9:e51102.
https://doi.org/10.7554/eLife.51102

Share this article

https://doi.org/10.7554/eLife.51102

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.