Stable task information from an unstable neural population

  1. Michael E Rule
  2. Adrianna R Loback
  3. Dhruva Raman
  4. Laura N Driscoll
  5. Christopher D Harvey
  6. Timothy O'Leary  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Stanford University, United States
  3. Harvard Medical School, United States

Abstract

Over days and weeks, neural activity representing an animal's position and movement in sensorimotor cortex has been found to continually reconfigure or 'drift' during repeated trials of learned tasks, with no obvious change in behavior. This challenges classical theories which assume stable engrams underlie stable behavior. However, it is not known whether this drift occurs systematically, allowing downstream circuits to extract consistent information. Analyzing long-term calcium imaging recordings from posterior parietal cortex in mice (Mus musculus), we show that drift is systematically constrained far above chance, facilitating a linear weighted readout of behavioural variables. However, a significant component of drift continually degrades a fixed readout, implying that drift is not confined to a null coding space. We calculate the amount of plasticity required to compensate drift independently of any learning rule, and find that this is within physiologically achievable bounds. We demonstrate that a simple, biologically plausible local learning rule can achieve these bounds, accurately decoding behavior over many days.

Data availability

Datasets recorded in Driscoll et al., 2017, are available from the Dryad repository under the doi:/10.5061/dryad.gqnk98sjq. The analysis code generated during this study is available on Github github.com/michaelerule/stable-task-information.

The following data sets were generated

Article and author information

Author details

  1. Michael E Rule

    Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4196-774X
  2. Adrianna R Loback

    Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dhruva Raman

    Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura N Driscoll

    Electrical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher D Harvey

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy O'Leary

    Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    tso24@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1029-0158

Funding

Human Frontier Science Program (RGY0069)

  • Michael E Rule
  • Adrianna R Loback
  • Christopher D Harvey
  • Timothy O'Leary

H2020 European Research Council (FLEXNEURO 716643)

  • Dhruva Raman
  • Timothy O'Leary

National Institutes of Health (NS089521)

  • Christopher D Harvey

National Institutes of Health (MH107620)

  • Christopher D Harvey

National Institutes of Health (NS108410)

  • Christopher D Harvey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Version history

  1. Received: August 15, 2019
  2. Accepted: June 17, 2020
  3. Accepted Manuscript published: July 14, 2020 (version 1)
  4. Version of Record published: July 30, 2020 (version 2)

Copyright

© 2020, Rule et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,058
    Page views
  • 966
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael E Rule
  2. Adrianna R Loback
  3. Dhruva Raman
  4. Laura N Driscoll
  5. Christopher D Harvey
  6. Timothy O'Leary
(2020)
Stable task information from an unstable neural population
eLife 9:e51121.
https://doi.org/10.7554/eLife.51121

Share this article

https://doi.org/10.7554/eLife.51121

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.