Abstract

Pseudokinases are considered to be the inactive counterparts of conventional protein kinases and comprise approximately 10% of the human and mouse kinomes. Here we report the crystal structure of the Legionella pneumophila effector protein, SidJ, in complex with the eukaryotic Ca2+-binding regulator, calmodulin (CaM). The structure reveals that SidJ contains a protein kinase-like fold domain, which retains a majority of the characteristic kinase catalytic motifs. However, SidJ fails to demonstrate kinase activity. Instead, mass spectrometry and in vitro biochemical analyses demonstrate that SidJ modifies another Legionella effector SdeA, an unconventional phosphoribosyl ubiquitin ligase, by adding glutamate molecules to a specific residue of SdeA in a CaM-dependent manner. Furthermore, we show that SidJ-mediated polyglutamylation suppresses the ADP-ribosylation activity. Our work further implies that some pseudokinases may possess ATP-dependent activities other than conventional phosphorylation.

Data availability

Diffraction data have been deposited in PDB under the accession code 6PLM

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alan Sulpizio

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marena E Minelli

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Wan

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D Burrowes

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaochun Wu

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ethan J Sanford

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jung-Ho Shin

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Byron C Williams

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael L Goldberg

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0200-0277
  10. Marcus B Smolka

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuxin Mao

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    ym253@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5064-1397

Funding

National Institute for Health Research (5R01GM116964)

  • Yuxin Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Sulpizio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,573
    views
  • 319
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan Sulpizio
  2. Marena E Minelli
  3. Min Wan
  4. Paul D Burrowes
  5. Xiaochun Wu
  6. Ethan J Sanford
  7. Jung-Ho Shin
  8. Byron C Williams
  9. Michael L Goldberg
  10. Marcus B Smolka
  11. Yuxin Mao
(2019)
Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ
eLife 8:e51162.
https://doi.org/10.7554/eLife.51162

Share this article

https://doi.org/10.7554/eLife.51162

Further reading

    1. Structural Biology and Molecular Biophysics
    Mia L Abramsson, Robin A Corey ... Michael Landreh
    Research Article

    Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.

    1. Structural Biology and Molecular Biophysics
    Giuseppe Deganutti, Ludovico Pipito ... Christopher Arthur Reynolds
    Research Article

    The structural basis for the pharmacology of human G protein-coupled receptors (GPCRs), the most abundant membrane proteins and the target of about 35% of approved drugs, is still a matter of intense study. What makes GPCRs challenging to study is the inherent flexibility and the metastable nature of interaction with extra- and intracellular partners that drive their effects. Here, we present a molecular dynamics (MD) adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), to address complex structural transitions involving GPCRs without energy input. We first report the binding and unbinding of the vasopressin peptide from its receptor V2. Successively, we present the complete transition of the glucagon-like peptide-1 receptor (GLP-1R) from inactive to active, agonist and Gs-bound state, and the guanosine diphosphate (GDP) release from Gs. To our knowledge, this is the first time the whole sequence of events leading from an inactive GPCR to the GDP release is simulated without any energy bias. We demonstrate that mwSuMD can address complex binding processes intrinsically linked to protein dynamics out of reach of classic MD.