Abstract

Pseudokinases are considered to be the inactive counterparts of conventional protein kinases and comprise approximately 10% of the human and mouse kinomes. Here we report the crystal structure of the Legionella pneumophila effector protein, SidJ, in complex with the eukaryotic Ca2+-binding regulator, calmodulin (CaM). The structure reveals that SidJ contains a protein kinase-like fold domain, which retains a majority of the characteristic kinase catalytic motifs. However, SidJ fails to demonstrate kinase activity. Instead, mass spectrometry and in vitro biochemical analyses demonstrate that SidJ modifies another Legionella effector SdeA, an unconventional phosphoribosyl ubiquitin ligase, by adding glutamate molecules to a specific residue of SdeA in a CaM-dependent manner. Furthermore, we show that SidJ-mediated polyglutamylation suppresses the ADP-ribosylation activity. Our work further implies that some pseudokinases may possess ATP-dependent activities other than conventional phosphorylation.

Data availability

Diffraction data have been deposited in PDB under the accession code 6PLM

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alan Sulpizio

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marena E Minelli

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Wan

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D Burrowes

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaochun Wu

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ethan J Sanford

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jung-Ho Shin

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Byron C Williams

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael L Goldberg

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0200-0277
  10. Marcus B Smolka

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuxin Mao

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    ym253@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5064-1397

Funding

National Institute for Health Research (5R01GM116964)

  • Yuxin Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Sulpizio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,554
    views
  • 319
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan Sulpizio
  2. Marena E Minelli
  3. Min Wan
  4. Paul D Burrowes
  5. Xiaochun Wu
  6. Ethan J Sanford
  7. Jung-Ho Shin
  8. Byron C Williams
  9. Michael L Goldberg
  10. Marcus B Smolka
  11. Yuxin Mao
(2019)
Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ
eLife 8:e51162.
https://doi.org/10.7554/eLife.51162

Share this article

https://doi.org/10.7554/eLife.51162

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.

    1. Structural Biology and Molecular Biophysics
    Kazi A Hossain, Lukasz Nierzwicki ... Giulia Palermo
    Research Article

    xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognising a series of alternative protospacer adjacent motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9’s expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.