1. Structural Biology and Molecular Biophysics
Download icon

Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ

Research Article
  • Cited 0
  • Views 371
  • Annotations
Cite this article as: eLife 2019;8:e51162 doi: 10.7554/eLife.51162

Abstract

Pseudokinases are considered to be the inactive counterparts of conventional protein kinases and comprise approximately 10% of the human and mouse kinomes. Here we report the crystal structure of the Legionella pneumophila effector protein, SidJ, in complex with the eukaryotic Ca2+-binding regulator, calmodulin (CaM). The structure reveals that SidJ contains a protein kinase-like fold domain, which retains a majority of the characteristic kinase catalytic motifs. However, SidJ fails to demonstrate kinase activity. Instead, mass spectrometry and in vitro biochemical analyses demonstrate that SidJ modifies another Legionella effector SdeA, an unconventional phosphoribosyl ubiquitin ligase, by adding glutamate molecules to a specific residue of SdeA in a CaM-dependent manner. Furthermore, we show that SidJ-mediated polyglutamylation suppresses the ADP-ribosylation activity. Our work further implies that some pseudokinases may possess ATP-dependent activities other than conventional phosphorylation.

Article and author information

Author details

  1. Alan Sulpizio

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marena E Minelli

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Wan

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D Burrowes

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaochun Wu

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ethan J Sanford

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jung-Ho Shin

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Byron C Williams

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael L Goldberg

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0200-0277
  10. Marcus B Smolka

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuxin Mao

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    ym253@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5064-1397

Funding

National Institute for Health Research (5R01GM116964)

  • Yuxin Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Publication history

  1. Received: August 17, 2019
  2. Accepted: November 3, 2019
  3. Accepted Manuscript published: November 4, 2019 (version 1)

Copyright

© 2019, Sulpizio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 371
    Page views
  • 78
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kanchan Gupta et al.
    Tools and Resources
    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Nicholas C Vierra et al.
    Research Article Updated