Causal links between parietal alpha activity and spatial auditory attention

  1. Yuqi Deng
  2. Robert MG Reinhart
  3. Inyong Choi
  4. Barbara G Shinn-Cunningham  Is a corresponding author
  1. Boston University, United States
  2. University of Iowa, United States
  3. Carnegie Mellon University, United States

Abstract

Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.

Data availability

Data are available from Dryad at https://dx.doi.org/10.5061/dryad.c031nv7

The following data sets were generated

Article and author information

Author details

  1. Yuqi Deng

    Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Robert MG Reinhart

    Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  3. Inyong Choi

    Communication Sciences and Disorders, University of Iowa, Iowa, United States
    Competing interests
    No competing interests declared.
  4. Barbara G Shinn-Cunningham

    Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    bgsc@andrew.cmu.edu
    Competing interests
    Barbara G Shinn-Cunningham, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5096-5914

Funding

National Institutes of Health (R01 DC015988)

  • Barbara G Shinn-Cunningham

Office of Naval Research (N000141812069)

  • Barbara G Shinn-Cunningham

National Institutes of Health (R01 MH-114877)

  • Robert MG Reinhart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave informed consent, as approved by the Boston University Charles River Campus IRB, under protocol 3597E.

Copyright

© 2019, Deng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,226
    views
  • 323
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuqi Deng
  2. Robert MG Reinhart
  3. Inyong Choi
  4. Barbara G Shinn-Cunningham
(2019)
Causal links between parietal alpha activity and spatial auditory attention
eLife 8:e51184.
https://doi.org/10.7554/eLife.51184

Share this article

https://doi.org/10.7554/eLife.51184

Further reading

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.