Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data

  1. Samuel A Neymotin  Is a corresponding author
  2. Dylan S Daniels
  3. Blake Caldwell
  4. Robert A McDougal
  5. Nicholas T Carnevale
  6. Mainak Jas
  7. Christopher I Moore
  8. Michael L Hines
  9. Matti Hämäläinen
  10. Stephanie R Jones  Is a corresponding author
  1. Brown University, United States
  2. Yale University, United States
  3. Massachusetts General Hospital, United States

Abstract

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.

Data availability

All source-code, model parameters, and associated data are provided in a permanent public-accessible repository on github (https://github.com/jonescompneurolab/hnn).

Article and author information

Author details

  1. Samuel A Neymotin

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    samuel.neymotin@nki.rfmh.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3646-5195
  2. Dylan S Daniels

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Blake Caldwell

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6882-6998
  4. Robert A McDougal

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6394-3127
  5. Nicholas T Carnevale

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mainak Jas

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher I Moore

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4534-1602
  8. Michael L Hines

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matti Hämäläinen

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie R Jones

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    Stephanie_Jones@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6760-5301

Funding

National Institute of Biomedical Imaging and Bioengineering (BRAIN Award 5-R01-EB022889-02)

  • Samuel A Neymotin
  • Dylan S Daniels
  • Blake Caldwell
  • Robert A McDougal
  • Nicholas T Carnevale
  • Mainak Jas
  • Christopher I Moore
  • Michael L Hines
  • Matti Hämäläinen
  • Stephanie R Jones

National Institute of Biomedical Imaging and Bioengineering (BRAIN Award Supplement R01EB022889-02S1)

  • Samuel A Neymotin
  • Dylan S Daniels
  • Blake Caldwell
  • Robert A McDougal
  • Nicholas T Carnevale
  • Mainak Jas
  • Christopher I Moore
  • Michael L Hines
  • Matti Hämäläinen
  • Stephanie R Jones

National Institute on Deafness and Other Communication Disorders (5-R01DC012947-07)

  • Samuel A Neymotin

Army Research Office (W911NF-19-1-0402)

  • Samuel A Neymotin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The views and conclusions contained in this document are those of the authorsand should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Copyright

© 2020, Neymotin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel A Neymotin
  2. Dylan S Daniels
  3. Blake Caldwell
  4. Robert A McDougal
  5. Nicholas T Carnevale
  6. Mainak Jas
  7. Christopher I Moore
  8. Michael L Hines
  9. Matti Hämäläinen
  10. Stephanie R Jones
(2020)
Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data
eLife 9:e51214.
https://doi.org/10.7554/eLife.51214

Share this article

https://doi.org/10.7554/eLife.51214

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.