Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data

  1. Samuel A Neymotin  Is a corresponding author
  2. Dylan S Daniels
  3. Blake Caldwell
  4. Robert A McDougal
  5. Nicholas T Carnevale
  6. Mainak Jas
  7. Christopher I Moore
  8. Michael L Hines
  9. Matti Hämäläinen
  10. Stephanie R Jones  Is a corresponding author
  1. Brown University, United States
  2. Yale University, United States
  3. Massachusetts General Hospital, United States

Abstract

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.

Data availability

All source-code, model parameters, and associated data are provided in a permanent public-accessible repository on github (https://github.com/jonescompneurolab/hnn).

Article and author information

Author details

  1. Samuel A Neymotin

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    samuel.neymotin@nki.rfmh.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3646-5195
  2. Dylan S Daniels

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Blake Caldwell

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6882-6998
  4. Robert A McDougal

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6394-3127
  5. Nicholas T Carnevale

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mainak Jas

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher I Moore

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4534-1602
  8. Michael L Hines

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matti Hämäläinen

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie R Jones

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    Stephanie_Jones@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6760-5301

Funding

National Institute of Biomedical Imaging and Bioengineering (BRAIN Award 5-R01-EB022889-02)

  • Samuel A Neymotin
  • Dylan S Daniels
  • Blake Caldwell
  • Robert A McDougal
  • Nicholas T Carnevale
  • Mainak Jas
  • Christopher I Moore
  • Michael L Hines
  • Matti Hämäläinen
  • Stephanie R Jones

National Institute of Biomedical Imaging and Bioengineering (BRAIN Award Supplement R01EB022889-02S1)

  • Samuel A Neymotin
  • Dylan S Daniels
  • Blake Caldwell
  • Robert A McDougal
  • Nicholas T Carnevale
  • Mainak Jas
  • Christopher I Moore
  • Michael L Hines
  • Matti Hämäläinen
  • Stephanie R Jones

National Institute on Deafness and Other Communication Disorders (5-R01DC012947-07)

  • Samuel A Neymotin

Army Research Office (W911NF-19-1-0402)

  • Samuel A Neymotin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The views and conclusions contained in this document are those of the authorsand should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Reviewing Editor

  1. Arjen Stolk, Donders Centre for Cognitive Neuroimaging, Netherlands

Version history

  1. Received: August 20, 2019
  2. Accepted: January 22, 2020
  3. Accepted Manuscript published: January 22, 2020 (version 1)
  4. Version of Record published: February 13, 2020 (version 2)

Copyright

© 2020, Neymotin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,480
    views
  • 838
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel A Neymotin
  2. Dylan S Daniels
  3. Blake Caldwell
  4. Robert A McDougal
  5. Nicholas T Carnevale
  6. Mainak Jas
  7. Christopher I Moore
  8. Michael L Hines
  9. Matti Hämäläinen
  10. Stephanie R Jones
(2020)
Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data
eLife 9:e51214.
https://doi.org/10.7554/eLife.51214

Share this article

https://doi.org/10.7554/eLife.51214

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Jongkyun Kang, Guodong Huang ... Jie Shen
    Research Article

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.