Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited  Is a corresponding author
  1. Harvard University, United States
  2. Brigham & Women's Hospital, United States
  3. Tufts University, United States
  4. Harvard Medical School, United States

Abstract

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.

Data availability

Raw data can be accessed in the NIH Sequence Read Archive: SUB6297224.

The following previously published data sets were used

Article and author information

Author details

  1. Konstantinos Sousounis

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Donald M Bryant

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Martinez Fernandez

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel S Eddy

    Orthopedic Surgery, Brigham & Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie L Tsai

    Stem Cell and Regenerative Biology, Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7549-3418
  6. Gregory C Gundberg

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jihee Han

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katharine Courtemanche

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Levin

    The Allen Discovery Center, Tufts University, Medford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7292-8084
  10. Jessica L Whited

    Department of Orthopedic Surgery, Harvard Medical School, Boston, United States
    For correspondence
    jwhited@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3709-6515

Funding

Sara Elizabeth O'Brien Trust (Postdoctoral fellowship)

  • Konstantinos Sousounis

National Institutes of Health (K99EY029361)

  • Konstantinos Sousounis

Paul G. Allen Family Foundation (Allen Discovery Center at Tufts)

  • Michael Levin
  • Jessica L Whited

National Institutes of Health (1DP2HD087953)

  • Jessica L Whited

National Institutes of Health (1R01HD095494)

  • Jessica L Whited

Harvard Stem Cell Institute (HIP)

  • Jose Martinez Fernandez

Howard Hughes Medical Institute (Gilliam Fellowship)

  • Donald M Bryant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving animals were performed according to IACUC protocol #2016N000369 at Brigham and Women's Hospital. All surgeries were performed while animals were anesthetized in tricaine. All experiments were planned and executed in manners that minimized animal suffering.

Reviewing Editor

  1. Stephen Randal Voss, University of Kentucky

Publication history

  1. Received: August 20, 2019
  2. Accepted: March 5, 2020
  3. Accepted Manuscript published: March 6, 2020 (version 1)
  4. Version of Record published: March 24, 2020 (version 2)

Copyright

© 2020, Sousounis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,029
    Page views
  • 398
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited
(2020)
Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration
eLife 9:e51217.
https://doi.org/10.7554/eLife.51217

Further reading

    1. Developmental Biology
    Hidenobu Miyazawa, Marteinn T Snaebjornsson ... Alexander Aulehla
    Research Article

    How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.

    1. Developmental Biology
    2. Genetics and Genomics
    Janani Ramachandran, Weiqiang Zhou ... Steven A Vokes
    Research Article Updated

    The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut. During larynx-esophageal separation, low Shh expression marks specific domains of actively remodeling epithelium that undergo an epithelial-to-mesenchymal transition (EMT) characterized by the induction of N-Cadherin and movement of cells out of the epithelial layer. Consistent with a role for SHH signaling in regulating this process, Shh mutants undergo an abnormal EMT throughout the anterior foregut and larynx, marked by a cadherin switch, movement out of the epithelial layer and cell death. Unexpectedly, Shh mutant epithelial cells are replaced by a new population of FOXA2-negative cells that likely derive from adjacent pouch tissues and form a rudimentary epithelium. These findings have important implications for interpreting the etiology of HH-dependent birth defects within the foregut. We propose that SHH signaling has a default role in maintaining epithelial identity throughout the anterior foregut and that regionalized reductions in SHH trigger epithelial remodeling.