Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited  Is a corresponding author
  1. Harvard University, United States
  2. Brigham & Women's Hospital, United States
  3. Tufts University, United States
  4. Harvard Medical School, United States

Abstract

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.

Data availability

Raw data can be accessed in the NIH Sequence Read Archive: SUB6297224.

The following previously published data sets were used

Article and author information

Author details

  1. Konstantinos Sousounis

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Donald M Bryant

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Martinez Fernandez

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel S Eddy

    Orthopedic Surgery, Brigham & Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie L Tsai

    Stem Cell and Regenerative Biology, Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7549-3418
  6. Gregory C Gundberg

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jihee Han

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katharine Courtemanche

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Levin

    The Allen Discovery Center, Tufts University, Medford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7292-8084
  10. Jessica L Whited

    Department of Orthopedic Surgery, Harvard Medical School, Boston, United States
    For correspondence
    jwhited@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3709-6515

Funding

Sara Elizabeth O'Brien Trust (Postdoctoral fellowship)

  • Konstantinos Sousounis

National Institutes of Health (K99EY029361)

  • Konstantinos Sousounis

Paul G. Allen Family Foundation (Allen Discovery Center at Tufts)

  • Michael Levin
  • Jessica L Whited

National Institutes of Health (1DP2HD087953)

  • Jessica L Whited

National Institutes of Health (1R01HD095494)

  • Jessica L Whited

Harvard Stem Cell Institute (HIP)

  • Jose Martinez Fernandez

Howard Hughes Medical Institute (Gilliam Fellowship)

  • Donald M Bryant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen Randal Voss, University of Kentucky

Ethics

Animal experimentation: All experiments involving animals were performed according to IACUC protocol #2016N000369 at Brigham and Women's Hospital. All surgeries were performed while animals were anesthetized in tricaine. All experiments were planned and executed in manners that minimized animal suffering.

Version history

  1. Received: August 20, 2019
  2. Accepted: March 5, 2020
  3. Accepted Manuscript published: March 6, 2020 (version 1)
  4. Version of Record published: March 24, 2020 (version 2)

Copyright

© 2020, Sousounis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,505
    views
  • 466
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited
(2020)
Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration
eLife 9:e51217.
https://doi.org/10.7554/eLife.51217

Share this article

https://doi.org/10.7554/eLife.51217

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.