Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited  Is a corresponding author
  1. Harvard University, United States
  2. Brigham & Women's Hospital, United States
  3. Tufts University, United States
  4. Harvard Medical School, United States

Abstract

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.

Data availability

Raw data can be accessed in the NIH Sequence Read Archive: SUB6297224.

The following previously published data sets were used

Article and author information

Author details

  1. Konstantinos Sousounis

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Donald M Bryant

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Martinez Fernandez

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel S Eddy

    Orthopedic Surgery, Brigham & Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie L Tsai

    Stem Cell and Regenerative Biology, Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7549-3418
  6. Gregory C Gundberg

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jihee Han

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katharine Courtemanche

    Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Levin

    The Allen Discovery Center, Tufts University, Medford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7292-8084
  10. Jessica L Whited

    Department of Orthopedic Surgery, Harvard Medical School, Boston, United States
    For correspondence
    jwhited@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3709-6515

Funding

Sara Elizabeth O'Brien Trust (Postdoctoral fellowship)

  • Konstantinos Sousounis

National Institutes of Health (K99EY029361)

  • Konstantinos Sousounis

Paul G. Allen Family Foundation (Allen Discovery Center at Tufts)

  • Michael Levin
  • Jessica L Whited

National Institutes of Health (1DP2HD087953)

  • Jessica L Whited

National Institutes of Health (1R01HD095494)

  • Jessica L Whited

Harvard Stem Cell Institute (HIP)

  • Jose Martinez Fernandez

Howard Hughes Medical Institute (Gilliam Fellowship)

  • Donald M Bryant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving animals were performed according to IACUC protocol #2016N000369 at Brigham and Women's Hospital. All surgeries were performed while animals were anesthetized in tricaine. All experiments were planned and executed in manners that minimized animal suffering.

Copyright

© 2020, Sousounis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,766
    views
  • 488
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantinos Sousounis
  2. Donald M Bryant
  3. Jose Martinez Fernandez
  4. Samuel S Eddy
  5. Stephanie L Tsai
  6. Gregory C Gundberg
  7. Jihee Han
  8. Katharine Courtemanche
  9. Michael Levin
  10. Jessica L Whited
(2020)
Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration
eLife 9:e51217.
https://doi.org/10.7554/eLife.51217

Share this article

https://doi.org/10.7554/eLife.51217

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.