The human coronavirus HCoV‐229E S‐protein structure and receptor binding

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini  Is a corresponding author
  1. University of Toronto, Canada
  2. INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Canada
  3. The Hospital for Sick Children Research Institute, Canada

Abstract

The coronavirus S-protein mediates receptor binding and fusion of the viral and host cell membranes. In HCoV-229E, its receptor binding domain (RBD) shows extensive sequence variation but how S-protein function is maintained is not understood. Reported are the X-ray crystal structures of Class III-V RBDs in complex with human aminopeptidase N (hAPN), as well as the electron cryomicroscopy structure of the 229E S-protein. The structures show that common core interactions define the specificity for hAPN and that the peripheral RBD sequence variation is accommodated by loop plasticity. The results provide insight into immune evasion and the cross-species transmission of 229E and related coronaviruses. We also find that the 229E S-protein can expose a portion of its helical core to solvent. This is undoubtedly facilitated by hydrophilic subunit interfaces that we show are conserved among coronaviruses. These interfaces likely play a role in the S-protein conformational changes associated with membrane fusion.

Data availability

The X-ray diffraction data and X-ray crystal structures have been deposited in PDB under accession codes 6U7E, 6U7F and 6U7G. The cryo-EM map has been deposited in EMDB under accession code EMD-20668. The cryo-EM structure has been deposited in PDB under accession code 6U7H.

The following data sets were generated

Article and author information

Author details

  1. Zhijie Li

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9283-6072
  2. Aidan C A Tomlinson

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan H M Wong

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dongxia Zhou

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Desforges

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Pierre J Talbot

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Samir Benlekbir

    Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. John L Rubinstein

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  9. James M Rini

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    james.rini@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0952-2409

Funding

Canadian Institutes of Health Research

  • James M Rini

Canadian Institutes of Health Research

  • John L Rubinstein

Canadian Institutes of Health Research

  • Pierre J Talbot

Canada Research Chairs

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pamela J Bjorkman, California Institute of Technology, United States

Version history

  1. Received: August 20, 2019
  2. Accepted: October 12, 2019
  3. Accepted Manuscript published: October 25, 2019 (version 1)
  4. Version of Record published: January 20, 2020 (version 2)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 23,622
    views
  • 1,738
    downloads
  • 122
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini
(2019)
The human coronavirus HCoV‐229E S‐protein structure and receptor binding
eLife 8:e51230.
https://doi.org/10.7554/eLife.51230

Share this article

https://doi.org/10.7554/eLife.51230

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.