The human coronavirus HCoV‐229E S‐protein structure and receptor binding

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini  Is a corresponding author
  1. University of Toronto, Canada
  2. INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Canada
  3. The Hospital for Sick Children Research Institute, Canada

Abstract

The coronavirus S-protein mediates receptor binding and fusion of the viral and host cell membranes. In HCoV-229E, its receptor binding domain (RBD) shows extensive sequence variation but how S-protein function is maintained is not understood. Reported are the X-ray crystal structures of Class III-V RBDs in complex with human aminopeptidase N (hAPN), as well as the electron cryomicroscopy structure of the 229E S-protein. The structures show that common core interactions define the specificity for hAPN and that the peripheral RBD sequence variation is accommodated by loop plasticity. The results provide insight into immune evasion and the cross-species transmission of 229E and related coronaviruses. We also find that the 229E S-protein can expose a portion of its helical core to solvent. This is undoubtedly facilitated by hydrophilic subunit interfaces that we show are conserved among coronaviruses. These interfaces likely play a role in the S-protein conformational changes associated with membrane fusion.

Data availability

The X-ray diffraction data and X-ray crystal structures have been deposited in PDB under accession codes 6U7E, 6U7F and 6U7G. The cryo-EM map has been deposited in EMDB under accession code EMD-20668. The cryo-EM structure has been deposited in PDB under accession code 6U7H.

The following data sets were generated

Article and author information

Author details

  1. Zhijie Li

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9283-6072
  2. Aidan C A Tomlinson

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan H M Wong

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dongxia Zhou

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Desforges

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Pierre J Talbot

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Samir Benlekbir

    Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. John L Rubinstein

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  9. James M Rini

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    james.rini@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0952-2409

Funding

Canadian Institutes of Health Research

  • James M Rini

Canadian Institutes of Health Research

  • John L Rubinstein

Canadian Institutes of Health Research

  • Pierre J Talbot

Canada Research Chairs

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 23,918
    views
  • 1,776
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini
(2019)
The human coronavirus HCoV‐229E S‐protein structure and receptor binding
eLife 8:e51230.
https://doi.org/10.7554/eLife.51230

Share this article

https://doi.org/10.7554/eLife.51230

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.