The human coronavirus HCoV‐229E S‐protein structure and receptor binding

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini  Is a corresponding author
  1. University of Toronto, Canada
  2. INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Canada
  3. The Hospital for Sick Children Research Institute, Canada

Abstract

The coronavirus S-protein mediates receptor binding and fusion of the viral and host cell membranes. In HCoV-229E, its receptor binding domain (RBD) shows extensive sequence variation but how S-protein function is maintained is not understood. Reported are the X-ray crystal structures of Class III-V RBDs in complex with human aminopeptidase N (hAPN), as well as the electron cryomicroscopy structure of the 229E S-protein. The structures show that common core interactions define the specificity for hAPN and that the peripheral RBD sequence variation is accommodated by loop plasticity. The results provide insight into immune evasion and the cross-species transmission of 229E and related coronaviruses. We also find that the 229E S-protein can expose a portion of its helical core to solvent. This is undoubtedly facilitated by hydrophilic subunit interfaces that we show are conserved among coronaviruses. These interfaces likely play a role in the S-protein conformational changes associated with membrane fusion.

Data availability

The X-ray diffraction data and X-ray crystal structures have been deposited in PDB under accession codes 6U7E, 6U7F and 6U7G. The cryo-EM map has been deposited in EMDB under accession code EMD-20668. The cryo-EM structure has been deposited in PDB under accession code 6U7H.

The following data sets were generated

Article and author information

Author details

  1. Zhijie Li

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9283-6072
  2. Aidan C A Tomlinson

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan H M Wong

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dongxia Zhou

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Desforges

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Pierre J Talbot

    Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Samir Benlekbir

    Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. John L Rubinstein

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  9. James M Rini

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    james.rini@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0952-2409

Funding

Canadian Institutes of Health Research

  • James M Rini

Canadian Institutes of Health Research

  • John L Rubinstein

Canadian Institutes of Health Research

  • Pierre J Talbot

Canada Research Chairs

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pamela J Bjorkman, California Institute of Technology, United States

Version history

  1. Received: August 20, 2019
  2. Accepted: October 12, 2019
  3. Accepted Manuscript published: October 25, 2019 (version 1)
  4. Version of Record published: January 20, 2020 (version 2)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 23,776
    views
  • 1,752
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhijie Li
  2. Aidan C A Tomlinson
  3. Alan H M Wong
  4. Dongxia Zhou
  5. Marc Desforges
  6. Pierre J Talbot
  7. Samir Benlekbir
  8. John L Rubinstein
  9. James M Rini
(2019)
The human coronavirus HCoV‐229E S‐protein structure and receptor binding
eLife 8:e51230.
https://doi.org/10.7554/eLife.51230

Share this article

https://doi.org/10.7554/eLife.51230

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.