Reversible promoter methylation determines fluctuating expression of acute phase proteins
Abstract
Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major APR, i.e. human C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-β and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-β that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.
Data availability
Sequencing data have been deposited in GEO under accession code GSE146797
-
Bisulfite-Seq analysis of WGBS_Lib 11 derived from human liver cellsNCBI Gene Expression Omnibus, GSM916049.
-
liver_N3_BSNCBI Gene Expression Omnibus, GSM1716965.
-
Whole Genome Shotgun Bisulfite Sequencing of Fat Cells from Human STL003NCBI Gene Expression Omnibus, GSM1120331.
-
Whole Genome Shotgun Bisulfite Sequencing of Adrenal Cells from Human STL003NCBI Gene Expression Omnibus, GSM1120325.
-
Whole Genome Shotgun Bisulfite Sequencing of Aorta Cells from Human STL003NCBI Gene Expression Omnibus, GSM1120329.
-
Whole Genome Shotgun Bisulfite Sequencing of Esophagus Cells from Human STL003NCBI Gene Expression Omnibus, GSM983649.
-
Whole Genome Shotgun Bisulfite Sequencing of Gastric Cells from Human STL003NCBI Gene Expression Omnibus, GSM1120333.
-
Whole Genome Shotgun Bisulfite Sequencing of Lung Cells from Human STL002NCBI Gene Expression Omnibus, GSM983647.
-
Whole Genome Shotgun Bisulfite Sequencing of Ovary Cells from Human STL002NCBI Gene Expression Omnibus, GSM1120323.
-
Whole Genome Shotgun Bisulfite Sequencing of Psoas Cells from Human STL003NCBI Gene Expression Omnibus, GSM1010986.
-
Whole Genome Shotgun Bisulfite Sequencing of Right Atrium Cells from Human STL003NCBI Gene Expression Omnibus, GSM1120335.
-
Whole Genome Shotgun Bisulfite Sequencing of Sigmoid Colon Cells from Human STL001NCBI Gene Expression Omnibus, GSM983645.
-
Whole Genome Shotgun Bisulfite Sequencing of Spleen Cells from Human STL003NCBI Gene Expression Omnibus, GSM983652.
-
Whole Genome Shotgun Bisulfite Sequencing of Thymus Cells from Human STL001NCBI Gene Expression Omnibus, GSM1120322.
Article and author information
Author details
Funding
National Natural Science Foundation of China (31671339,31870767)
- Yi Wu
National Natural Science Foundation of China (31570749,31770819)
- Shang-Rong Ji
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The experiments conformed to the Guide for the Care and Use of Laboratory Animals published by NIH, and were conducted according to the protocols approved by the Ethics Committee of Animal Experiments of Xi'an Jiaotong University and Lanzhou University.
Reviewing Editor
- Deborah Bourc'his, Institut Curie, France
Publication history
- Received: August 25, 2019
- Accepted: March 27, 2020
- Accepted Manuscript published: March 30, 2020 (version 1)
- Version of Record published: April 6, 2020 (version 2)
Copyright
© 2020, Zhang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,147
- Page views
-
- 154
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Immunology and Inflammation
The oxidative state of a critical cysteine residue determines the enzymatic activity of a phosphatase involved in T-cell immune responses.
-
- Immunology and Inflammation
- Structural Biology and Molecular Biophysics
Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCR) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pW), including the pW-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers.