Reversible promoter methylation determines fluctuating expression of acute phase proteins

  1. Shi-Chao Zhang
  2. Ming-Yu Wang
  3. Jun-Rui Feng
  4. Yue Chang
  5. Shang-Rong Ji  Is a corresponding author
  6. Yi Wu  Is a corresponding author
  1. Lanzhou University, China
  2. Xi'an Jiaotong University, China

Abstract

Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major APR, i.e. human C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-β and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-β that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.

Data availability

Sequencing data have been deposited in GEO under accession code GSE146797

The following previously published data sets were used
    1. Xin Li
    (2016) liver_N3_BS
    NCBI Gene Expression Omnibus, GSM1716965.

Article and author information

Author details

  1. Shi-Chao Zhang

    School of Life Sciences, Lanzhou University, Lanzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ming-Yu Wang

    School of Life Sciences, Lanzhou University, Lanzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-Rui Feng

    School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yue Chang

    School of Life Sciences, Lanzhou University, Lanzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shang-Rong Ji

    School of Life Sciences, Lanzhou University, Lanzhou, China
    For correspondence
    jsr@lzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  6. Yi Wu

    School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
    For correspondence
    wuy@lzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0365-5590

Funding

National Natural Science Foundation of China (31671339,31870767)

  • Yi Wu

National Natural Science Foundation of China (31570749,31770819)

  • Shang-Rong Ji

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments conformed to the Guide for the Care and Use of Laboratory Animals published by NIH, and were conducted according to the protocols approved by the Ethics Committee of Animal Experiments of Xi'an Jiaotong University and Lanzhou University.

Reviewing Editor

  1. Deborah Bourc'his, Institut Curie, France

Publication history

  1. Received: August 25, 2019
  2. Accepted: March 27, 2020
  3. Accepted Manuscript published: March 30, 2020 (version 1)
  4. Version of Record published: April 6, 2020 (version 2)

Copyright

© 2020, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,147
    Page views
  • 154
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shi-Chao Zhang
  2. Ming-Yu Wang
  3. Jun-Rui Feng
  4. Yue Chang
  5. Shang-Rong Ji
  6. Yi Wu
(2020)
Reversible promoter methylation determines fluctuating expression of acute phase proteins
eLife 9:e51317.
https://doi.org/10.7554/eLife.51317

Further reading

    1. Immunology and Inflammation
    Magdalena Shumanska, Ivan Bogeski
    Insight

    The oxidative state of a critical cysteine residue determines the enzymatic activity of a phosphatase involved in T-cell immune responses.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Malcolm JW Sim et al.
    Research Article

    Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCR) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pW), including the pW-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers.