Relaxation of synaptic inhibitory events as a compensatory mechanism in fetal SOD spinal motor networks

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons (MNs) during late adulthood. Here, with the aim of identifying early changes underpinning ALS neurodegeneration, we analyzed the GABAergic/glycinergic inputs to E17.5 fetal MNs from SOD1G93A (SOD) mice in parallel with chloride homeostasis. Our results show that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals. SOD MNs exhibited an EGABAAR 10 mV more depolarized than in WT MNs associated with a KCC2 reduction. Interestingly, SOD GABAergic/glycinergic IPSCs and evoked GABAAR-currents exhibited a slower decay correlated to elevated [Cl-]i. Computer simulations revealed that a slower relaxation of synaptic inhibitory events acts as compensatory mechanism to strengthen GABA/glycine inhibition when EGABAAR is more depolarized. How such mechanisms evolve during pathophysiological processes remain to be determined, but our data indicate that at least SOD1 familial ALS may be considered as a neurodevelopmental disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Pascal Branchereau

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    For correspondence
    pascal.branchereau@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3972-8229
  2. Elodie Martin

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Supiot

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fara Hodeib

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Amandine Laupénie

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Urvashi Dalvi

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Hongmei Zhu

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. William Cazenave

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel Cattaert

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Federation pour la Recherche sur le Cerveau

  • Pascal Branchereau

Association pour la Recherche sur la Sclérose Latérale Amyotrophique et autres Maladies du Motoneurone

  • Pascal Branchereau

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

Ethics

Animal experimentation: All procedures were carried out in accordance with the local ethics committee of the University of Bordeaux (Saisine SOD1G093A - APAFiS #19366) and European Committee Council directives. All efforts were made to minimize animal suffering and reduce the number of animals used.

Copyright

© 2019, Branchereau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,034
    views
  • 200
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pascal Branchereau
  2. Elodie Martin
  3. Laura Supiot
  4. Fara Hodeib
  5. Amandine Laupénie
  6. Urvashi Dalvi
  7. Hongmei Zhu
  8. William Cazenave
  9. Daniel Cattaert
(2019)
Relaxation of synaptic inhibitory events as a compensatory mechanism in fetal SOD spinal motor networks
eLife 8:e51402.
https://doi.org/10.7554/eLife.51402

Share this article

https://doi.org/10.7554/eLife.51402

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.