Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity

Abstract

Up-regulation of the persistent sodium current (INaP) and down-regulation of the potassium/chloride extruder KCC2 lead to spasticity after spinal cord injury (SCI). We here identified calpain as the driver of the up- and down-regulation of INaP and KCC2, respectively, in neonatal rat lumbar motoneurons. Few days after SCI, neonatal rats developed behavioral signs of spasticity with the emergence of both hyperreflexia and abnormal involuntary muscle contractions on hindlimbs. At the same time, in vitro isolated lumbar spinal cords became hyperreflexive and displayed numerous spontaneous motor outputs. Calpain-I expression paralleled with a proteolysis of voltage-gated sodium (Nav) channels and KCC2. Acute inhibition of calpains reduced this proteolysis, restored the motoneuronal expression of Nav and KCC2, normalized INaP and KCC2 function, and curtailed spasticity. In sum, by up- and down-regulating INaP and KCC2, the calpain-mediated proteolysis of Nav and KCC2 drives the hyperexcitability of motoneurons which leads to spasticity after SCI.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures and Supplementary Figures of the manuscript.

Article and author information

Author details

  1. Vanessa Plantier

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene Sanchez-Brualla

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Nejada Dingu

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Cécile Brocard

    Institut de Neurosciences Timone UMR7289, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sylvie Liabeuf

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Florian Gackière

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Frédéric Brocard

    Institut de Neurosciences de la Timone, CNRS Aix Marseille University, Marseille, France
    For correspondence
    frederic.brocard@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9444-9586

Funding

Agence Nationale de la Recherche (ANR CalpaSCI-16-CE16-0004)

  • Frédéric Brocard

Institut Recherche sur la Moelle Epiniere (SPV/MB/173439)

  • Frédéric Brocard

Fondation pour la Recherche Médicale (FDT20170437125)

  • Frédéric Brocard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We made all efforts to minimize animal suffering and the number of animals used. All animal care and use conformed to the French regulations (Décret 2010-118) and were approved by the local ethics committee (Comité d'Ethique en Neurosciences INT-Marseille, CE Nb A1301404, authorization Nb 2018110819197361).

Copyright

© 2019, Plantier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,500
    views
  • 242
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vanessa Plantier
  2. Irene Sanchez-Brualla
  3. Nejada Dingu
  4. Cécile Brocard
  5. Sylvie Liabeuf
  6. Florian Gackière
  7. Frédéric Brocard
(2019)
Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity
eLife 8:e51404.
https://doi.org/10.7554/eLife.51404

Share this article

https://doi.org/10.7554/eLife.51404

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Nico A Flierman, Sue Ann Koay ... Chris I De Zeeuw
    Research Article

    The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.