Abstract

Although mTOR signaling is known as a broad regulator of cell growth and proliferation, in neurons it regulates synaptic transmission, which is thought to be a major mechanism through which altered mTOR signaling leads to neurological disease. Although previous studies have delineated postsynaptic roles for mTOR, whether it regulates presynaptic function is largely unknown. Moreover, the mTOR kinase operates in two complexes, mTORC1 and mTORC2, suggesting that mTOR's role in synaptic transmission may be complex-specific. To better understand their roles in synaptic transmission, we genetically inactivated mTORC1 or mTORC2 in cultured mouse glutamatergic hippocampal neurons. Inactivation of either complex reduced neuron growth and evoked EPSCs (eEPSCs), however, the effects of mTORC1 on eEPSCs were postsynaptic and the effects of mTORC2 were presynaptic. Despite postsynaptic inhibition of evoked release, mTORC1 inactivation enhanced spontaneous vesicle fusion and replenishment, suggesting that mTORC1 and mTORC2 differentially modulate postsynaptic responsiveness and presynaptic release to optimize glutamatergic synaptic transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew P McCabe

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin R Cullen

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caitlynn M Barrows

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4696-9354
  4. Amy N Shore

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine I Tooke

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathryn A Laprade

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James M Stafford

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew C Weston

    Neurological Sciences, University of Vermont, Burlington, United States
    For correspondence
    mcweston@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5558-7070

Funding

National Institute of Neurological Disorders and Stroke (R00NS087095)

  • Matthew C Weston

National Institute of Neurological Disorders and Stroke (R01NS110945)

  • Matthew C Weston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Vermont. The protocol was approved by the University of Vermont's Research Protections Office (Protocol Number: 16-001). All animals were killed under isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: August 28, 2019
  2. Accepted: March 2, 2020
  3. Accepted Manuscript published: March 3, 2020 (version 1)
  4. Version of Record published: March 18, 2020 (version 2)

Copyright

© 2020, McCabe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,203
    Page views
  • 660
    Downloads
  • 38
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew P McCabe
  2. Erin R Cullen
  3. Caitlynn M Barrows
  4. Amy N Shore
  5. Katherine I Tooke
  6. Kathryn A Laprade
  7. James M Stafford
  8. Matthew C Weston
(2020)
Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission
eLife 9:e51440.
https://doi.org/10.7554/eLife.51440

Share this article

https://doi.org/10.7554/eLife.51440

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.