Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission

Abstract

Although mTOR signaling is known as a broad regulator of cell growth and proliferation, in neurons it regulates synaptic transmission, which is thought to be a major mechanism through which altered mTOR signaling leads to neurological disease. Although previous studies have delineated postsynaptic roles for mTOR, whether it regulates presynaptic function is largely unknown. Moreover, the mTOR kinase operates in two complexes, mTORC1 and mTORC2, suggesting that mTOR's role in synaptic transmission may be complex-specific. To better understand their roles in synaptic transmission, we genetically inactivated mTORC1 or mTORC2 in cultured mouse glutamatergic hippocampal neurons. Inactivation of either complex reduced neuron growth and evoked EPSCs (eEPSCs), however, the effects of mTORC1 on eEPSCs were postsynaptic and the effects of mTORC2 were presynaptic. Despite postsynaptic inhibition of evoked release, mTORC1 inactivation enhanced spontaneous vesicle fusion and replenishment, suggesting that mTORC1 and mTORC2 differentially modulate postsynaptic responsiveness and presynaptic release to optimize glutamatergic synaptic transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew P McCabe

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin R Cullen

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caitlynn M Barrows

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4696-9354
  4. Amy N Shore

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine I Tooke

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathryn A Laprade

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James M Stafford

    Neurological Sciences, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew C Weston

    Neurological Sciences, University of Vermont, Burlington, United States
    For correspondence
    mcweston@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5558-7070

Funding

National Institute of Neurological Disorders and Stroke (R00NS087095)

  • Matthew C Weston

National Institute of Neurological Disorders and Stroke (R01NS110945)

  • Matthew C Weston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Vermont. The protocol was approved by the University of Vermont's Research Protections Office (Protocol Number: 16-001). All animals were killed under isofluorane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Publication history

  1. Received: August 28, 2019
  2. Accepted: March 2, 2020
  3. Accepted Manuscript published: March 3, 2020 (version 1)
  4. Version of Record published: March 18, 2020 (version 2)

Copyright

© 2020, McCabe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,614
    Page views
  • 490
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew P McCabe
  2. Erin R Cullen
  3. Caitlynn M Barrows
  4. Amy N Shore
  5. Katherine I Tooke
  6. Kathryn A Laprade
  7. James M Stafford
  8. Matthew C Weston
(2020)
Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission
eLife 9:e51440.
https://doi.org/10.7554/eLife.51440

Further reading

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

    1. Neuroscience
    Mohammad Ali Salehinejad et al.
    Research Article Updated

    Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.