MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions

  1. Francesco M Piccolo  Is a corresponding author
  2. Zhe Liu
  3. Peng Dong
  4. Ching-Lung Hsu
  5. Elitsa I Stoyanova
  6. Anjana Rao
  7. Robert Tjian
  8. Nathaniel Heintz  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. La Jolla Institute For Allergy and Immunology, United States
  4. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Francesco M Piccolo

    Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    fpiccolo@rockefeller.edu
    Competing interests
    No competing interests declared.
  2. Zhe Liu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3592-3150
  3. Peng Dong

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Ching-Lung Hsu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Elitsa I Stoyanova

    Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6400-6119
  6. Anjana Rao

    Division of Signaling and Gene Expression, La Jolla Institute For Allergy and Immunology, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Robert Tjian

    Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Robert Tjian, One of the three founding funders of eLife and a member of eLife's Board of Directors.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0539-8217
  8. Nathaniel Heintz

    Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    heintz@rockefeller.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8874-8704

Funding

Howard Hughes Medical Institute

  • Nathaniel Heintz

Howard Hughes Medical Institute

  • Zhe Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Job Dekker, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (# 16944) of the Rockefeller University. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Rockefeller University (OLAW assurance # #A3081-01).

Version history

  1. Received: August 28, 2019
  2. Accepted: December 22, 2019
  3. Accepted Manuscript published: December 23, 2019 (version 1)
  4. Version of Record published: January 13, 2020 (version 2)

Copyright

© 2019, Piccolo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,632
    views
  • 429
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco M Piccolo
  2. Zhe Liu
  3. Peng Dong
  4. Ching-Lung Hsu
  5. Elitsa I Stoyanova
  6. Anjana Rao
  7. Robert Tjian
  8. Nathaniel Heintz
(2019)
MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions
eLife 8:e51449.
https://doi.org/10.7554/eLife.51449

Share this article

https://doi.org/10.7554/eLife.51449

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.