Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome
Abstract
Mycobacterium tuberculosis (Mtb) produces inflections in the host signaling networks to create a favorable milieu for survival. The virulent Mtb strain, Rv caused double strand breaks (DSBs) whereas the non-virulent Ra strain triggered single stranded DNA generation. The effectors secreted by SecA2 pathway were essential and adequate for the genesis of DSBs. Accumulation of DSBs mediated through Rv activates ATM-Chk2 pathway of DNA damage response (DDR) signaling, resulting in altered cell cycle. Instead of the classical ATM-Chk2 DDR, Mtb gains survival advantage through ATM-Akt signaling cascade. Notably, in vivo infection with Mtb led to sustained DSBs and ATM activation during chronic phase of tuberculosis. Addition of ATM inhibitor enhances isoniazid mediated Mtb clearance in macrophages as well as in murine infection model, suggesting its utility for host directed adjunct therapy. Collectively, data suggests that DSBs inflicted by SecA2 secretome of Mtb provides survival niche through activation of ATM kinase.
Data availability
Numerical data for graphs is provided as a Source Data File.
Article and author information
Author details
Funding
Department of Biotechnology , Ministry of Science and Technology (BT/PR13522/COE/34/27/2015)
- Vinay Kumar Nandicoori
University Grants Commission (DS Kothari Postdoctoral Fellowship)
- Savita Lochab
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The experimental protocol for the animal experiments was approved by the Animal Ethics Committee of the National Institute of Immunology, New Delhi, India. The approval (IAEC#409/16 & IAEC#462/18) is as per the guidelines issued by Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.
Copyright
© 2020, Lochab et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,744
- views
-
- 390
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-γ-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While ΔMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo, independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues ΔMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma-host interactions beyond the infected cell.
-
- Cell Biology
- Microbiology and Infectious Disease
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.