Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome

  1. Savita Lochab
  2. Yogendra Singh
  3. Sagar Sengupta
  4. Vinay Kumar Nandicoori  Is a corresponding author
  1. National Institute of Immunology, India
  2. University of Delhi, India

Abstract

Mycobacterium tuberculosis (Mtb) produces inflections in the host signaling networks to create a favorable milieu for survival. The virulent Mtb strain, Rv caused double strand breaks (DSBs) whereas the non-virulent Ra strain triggered single stranded DNA generation. The effectors secreted by SecA2 pathway were essential and adequate for the genesis of DSBs. Accumulation of DSBs mediated through Rv activates ATM-Chk2 pathway of DNA damage response (DDR) signaling, resulting in altered cell cycle. Instead of the classical ATM-Chk2 DDR, Mtb gains survival advantage through ATM-Akt signaling cascade. Notably, in vivo infection with Mtb led to sustained DSBs and ATM activation during chronic phase of tuberculosis. Addition of ATM inhibitor enhances isoniazid mediated Mtb clearance in macrophages as well as in murine infection model, suggesting its utility for host directed adjunct therapy. Collectively, data suggests that DSBs inflicted by SecA2 secretome of Mtb provides survival niche through activation of ATM kinase.

Data availability

Numerical data for graphs is provided as a Source Data File.

Article and author information

Author details

  1. Savita Lochab

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Yogendra Singh

    Department of Zoology, University of Delhi, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sagar Sengupta

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Vinay Kumar Nandicoori

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    For correspondence
    vinaykn@nii.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5682-4178

Funding

Department of Biotechnology , Ministry of Science and Technology (BT/PR13522/COE/34/27/2015)

  • Vinay Kumar Nandicoori

University Grants Commission (DS Kothari Postdoctoral Fellowship)

  • Savita Lochab

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocol for the animal experiments was approved by the Animal Ethics Committee of the National Institute of Immunology, New Delhi, India. The approval (IAEC#409/16 & IAEC#462/18) is as per the guidelines issued by Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Copyright

© 2020, Lochab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,811
    views
  • 399
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Savita Lochab
  2. Yogendra Singh
  3. Sagar Sengupta
  4. Vinay Kumar Nandicoori
(2020)
Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome
eLife 9:e51466.
https://doi.org/10.7554/eLife.51466

Share this article

https://doi.org/10.7554/eLife.51466

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.