Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome

  1. Savita Lochab
  2. Yogendra Singh
  3. Sagar Sengupta
  4. Vinay Kumar Nandicoori  Is a corresponding author
  1. National Institute of Immunology, India
  2. University of Delhi, India

Abstract

Mycobacterium tuberculosis (Mtb) produces inflections in the host signaling networks to create a favorable milieu for survival. The virulent Mtb strain, Rv caused double strand breaks (DSBs) whereas the non-virulent Ra strain triggered single stranded DNA generation. The effectors secreted by SecA2 pathway were essential and adequate for the genesis of DSBs. Accumulation of DSBs mediated through Rv activates ATM-Chk2 pathway of DNA damage response (DDR) signaling, resulting in altered cell cycle. Instead of the classical ATM-Chk2 DDR, Mtb gains survival advantage through ATM-Akt signaling cascade. Notably, in vivo infection with Mtb led to sustained DSBs and ATM activation during chronic phase of tuberculosis. Addition of ATM inhibitor enhances isoniazid mediated Mtb clearance in macrophages as well as in murine infection model, suggesting its utility for host directed adjunct therapy. Collectively, data suggests that DSBs inflicted by SecA2 secretome of Mtb provides survival niche through activation of ATM kinase.

Data availability

Numerical data for graphs is provided as a Source Data File.

Article and author information

Author details

  1. Savita Lochab

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Yogendra Singh

    Department of Zoology, University of Delhi, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sagar Sengupta

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Vinay Kumar Nandicoori

    Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
    For correspondence
    vinaykn@nii.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5682-4178

Funding

Department of Biotechnology , Ministry of Science and Technology (BT/PR13522/COE/34/27/2015)

  • Vinay Kumar Nandicoori

University Grants Commission (DS Kothari Postdoctoral Fellowship)

  • Savita Lochab

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Ethics

Animal experimentation: The experimental protocol for the animal experiments was approved by the Animal Ethics Committee of the National Institute of Immunology, New Delhi, India. The approval (IAEC#409/16 & IAEC#462/18) is as per the guidelines issued by Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Version history

  1. Received: August 29, 2019
  2. Accepted: March 27, 2020
  3. Accepted Manuscript published: March 30, 2020 (version 1)
  4. Version of Record published: April 16, 2020 (version 2)
  5. Version of Record updated: May 27, 2020 (version 3)

Copyright

© 2020, Lochab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,599
    views
  • 370
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Savita Lochab
  2. Yogendra Singh
  3. Sagar Sengupta
  4. Vinay Kumar Nandicoori
(2020)
Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome
eLife 9:e51466.
https://doi.org/10.7554/eLife.51466

Share this article

https://doi.org/10.7554/eLife.51466

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.