Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa

Abstract

Evolution is at the core of the impending antibiotic crisis. Sustainable therapy must thus account for the adaptive potential of pathogens. One option is to exploit evolutionary trade-offs, like collateral sensitivity, where evolved resistance to one antibiotic causes hypersensitivity to another one. To date, the evolutionary stability and thus clinical utility of this trade-off is unclear. We performed a critical experimental test on this key requirement, using evolution experiments with Pseudomonas aeruginosa, and identified three main outcomes: (i) bacteria commonly failed to counter hypersensitivity and went extinct; (ii) hypersensitivity sometimes converted into multidrug resistance; and (iii) resistance gains frequently caused re-sensitization to the previous drug, thereby maintaining the trade-off. Drug order affected the evolutionary outcome, most likely due to variation in the effect size of collateral sensitivity, epistasis among adaptive mutations, and fitness costs. Our finding of robust genetic trade-offs and drug-order effects can guide design of evolution-informed antibiotic therapy.

Data availability

Sequencing data have been deposited at NCBI under the BioProject number: PRJNA524114.All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. Camilo Barbosa

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Roderich Römhild

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Philip Rosenstiel

    Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9692-8828
  4. Hinrich Schulenburg

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    For correspondence
    hschulenburg@zoologie.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1413-913X

Funding

Deutsche Forschungsgemeinschaft (SCHU 1415/12-1)

  • Hinrich Schulenburg

Deutsche Forschungsgemeinschaft (EXC 22167-39088401)

  • Philip Rosenstiel
  • Hinrich Schulenburg

Leibniz-Gemeinschaft (EvoLUNG)

  • Camilo Barbosa
  • Hinrich Schulenburg

Max-Planck-Gesellschaft (IMPRS Evolutionary Biology)

  • Camilo Barbosa
  • Roderich Römhild

Max-Planck-Gesellschaft (Fellowship)

  • Hinrich Schulenburg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Barbosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,867
    views
  • 700
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camilo Barbosa
  2. Roderich Römhild
  3. Philip Rosenstiel
  4. Hinrich Schulenburg
(2019)
Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa
eLife 8:e51481.
https://doi.org/10.7554/eLife.51481

Share this article

https://doi.org/10.7554/eLife.51481

Further reading

    1. Evolutionary Biology
    Lin Chao, Chun Kuen Chan ... Ulla Camilla Rang
    Research Article

    Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.