Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa

Abstract

Evolution is at the core of the impending antibiotic crisis. Sustainable therapy must thus account for the adaptive potential of pathogens. One option is to exploit evolutionary trade-offs, like collateral sensitivity, where evolved resistance to one antibiotic causes hypersensitivity to another one. To date, the evolutionary stability and thus clinical utility of this trade-off is unclear. We performed a critical experimental test on this key requirement, using evolution experiments with Pseudomonas aeruginosa, and identified three main outcomes: (i) bacteria commonly failed to counter hypersensitivity and went extinct; (ii) hypersensitivity sometimes converted into multidrug resistance; and (iii) resistance gains frequently caused re-sensitization to the previous drug, thereby maintaining the trade-off. Drug order affected the evolutionary outcome, most likely due to variation in the effect size of collateral sensitivity, epistasis among adaptive mutations, and fitness costs. Our finding of robust genetic trade-offs and drug-order effects can guide design of evolution-informed antibiotic therapy.

Data availability

Sequencing data have been deposited at NCBI under the BioProject number: PRJNA524114.All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. Camilo Barbosa

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Roderich Römhild

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Philip Rosenstiel

    Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9692-8828
  4. Hinrich Schulenburg

    Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
    For correspondence
    hschulenburg@zoologie.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1413-913X

Funding

Deutsche Forschungsgemeinschaft (SCHU 1415/12-1)

  • Hinrich Schulenburg

Deutsche Forschungsgemeinschaft (EXC 22167-39088401)

  • Philip Rosenstiel
  • Hinrich Schulenburg

Leibniz-Gemeinschaft (EvoLUNG)

  • Camilo Barbosa
  • Hinrich Schulenburg

Max-Planck-Gesellschaft (IMPRS Evolutionary Biology)

  • Camilo Barbosa
  • Roderich Römhild

Max-Planck-Gesellschaft (Fellowship)

  • Hinrich Schulenburg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Csaba Pal, Biological Research Centre of the Hungarian Academy of Sciences, Hungary

Version history

  1. Received: August 30, 2019
  2. Accepted: October 21, 2019
  3. Accepted Manuscript published: October 29, 2019 (version 1)
  4. Version of Record published: November 27, 2019 (version 2)

Copyright

© 2019, Barbosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,663
    views
  • 681
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camilo Barbosa
  2. Roderich Römhild
  3. Philip Rosenstiel
  4. Hinrich Schulenburg
(2019)
Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa
eLife 8:e51481.
https://doi.org/10.7554/eLife.51481

Share this article

https://doi.org/10.7554/eLife.51481

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.