1. Stem Cells and Regenerative Medicine
Download icon

Functionally heterogeneous human satellite cells identified by single cell RNA sequencing

Research Article
  • Cited 6
  • Views 2,983
  • Annotations
Cite this article as: eLife 2020;9:e51576 doi: 10.7554/eLife.51576

Abstract

Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations.

Article and author information

Author details

  1. Emilie Barruet

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven M Garcia

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharine Striedinger

    Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jake Wu

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Solomon Lee

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lauren Byrnes

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alvin Wong

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sun Xuefeng

    Orthopedic Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Stanley Tamaki

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew S Brack

    Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jason H Pomerantz

    Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
    For correspondence
    jason.pomerantz@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5107-1883

Funding

California Institute for Regenerative Medicine (New Faculty Physician Scientist Award RN3-06504)

  • Jason H Pomerantz

National Institutes of Health (R01AR072638-03)

  • Jason H Pomerantz

University of California, San Francisco (UCSF PROF-PATH program via NIH R25MD006832)

  • Steven M Garcia

University of California, San Francisco (Research Allocation Program for trainees)

  • Solomon Lee

Eli and Edythe Broad Foundation (Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research Fellowship)

  • Alvin Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved and performed in accordance with the UCSF Institutional Animal Care and Use Committee (Protocols #181101).

Human subjects: This study was conducted under the approval of the Institutional Review Board at The University of California San Francisco (UCSF). Written informed consent was obtained from all subjects.

Reviewing Editor

  1. Shahragim Tajbakhsh, Institut Pasteur, France

Publication history

  1. Received: September 4, 2019
  2. Accepted: March 27, 2020
  3. Accepted Manuscript published: April 1, 2020 (version 1)
  4. Version of Record published: April 17, 2020 (version 2)

Copyright

© 2020, Barruet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,983
    Page views
  • 472
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Stem Cells and Regenerative Medicine
    Brya G Matthews et al.
    Research Article

    The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that αSMA identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture, can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum, but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched for skeletal progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Dina Simkin et al.
    Research Article

    Mutations in KCNQ2, which encodes a pore-forming K+ channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of KCNQ2 mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca2+-activated K+ channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.