A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation

  1. Rongsui Gao
  2. Wenhui Wei
  3. Bachar H Hassan
  4. Jun Li
  5. Jiao-Yu Deng
  6. Youjun Feng  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Stony Brook University, United States
  3. Zhejiang University of Technology, China
  4. Chinese Academy of Sciences, China

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all domains of life, the homeostasis of which requires tight regulation. Here we report that a Nudix-related transcriptional factor, designated MsNrtR (MSMEG_3198), controls the de novo pathway of NAD+ biosynthesis in M. smegmatis, a non-tuberculosis Mycobacterium. The integrated evidence in vitro and in vivo confirms that MsNrtR is an auto-repressor, and negatively controls the de novo NAD+ biosynthetic pathway. Binding of MsNrtR cognate DNA is finely mapped, which can be disrupted by an ADP-ribose intermediate. Unexpectedly, we discover that the acetylation of MsNrtR at Lysine 134 participates in the homeostasis of intra-cellular NAD+ level in M. smegmatis. Furthermore, we demonstrate that NrtR acetylation proceeds via the non-enzymatic acetyl-phosphate (AcP) route rather than the enzymatic Pat/CobB pathway. In addition, the acetylation of NrtR also occurs in its paralogs of Gram-positive bacterium Streptococcus and Gram-negative bacterium Vibrio, suggesting a common mechanism of post-translational modification in the context of NAD+ homeostasis. Together, it represents a first paradigm for the recruitment of acetylated NrtR to regulate bacterial central NAD+ metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rongsui Gao

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenhui Wei

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bachar H Hassan

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Li

    College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiao-Yu Deng

    Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Youjun Feng

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    fengyj@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8083-0175

Funding

National Natural Science Foundation of China (31830001)

  • Youjun Feng

National Key R&D Program of China (2017YFD0500202)

  • Youjun Feng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,045
    views
  • 382
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rongsui Gao
  2. Wenhui Wei
  3. Bachar H Hassan
  4. Jun Li
  5. Jiao-Yu Deng
  6. Youjun Feng
(2019)
A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation
eLife 8:e51603.
https://doi.org/10.7554/eLife.51603

Share this article

https://doi.org/10.7554/eLife.51603

Further reading

    1. Microbiology and Infectious Disease
    Malik Zohaib Ali, Taru S Dutt ... Mercedes Gonzalez Juarrero
    Research Article

    The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa ––BPaS regimen––has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.

    1. Microbiology and Infectious Disease
    Nicholas J Hathaway, Isaac E Kim ... Jeffrey A Bailey
    Research Article

    Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13–11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.