A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation

  1. Rongsui Gao
  2. Wenhui Wei
  3. Bachar H Hassan
  4. Jun Li
  5. Jiao-Yu Deng
  6. Youjun Feng  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Stony Brook University, United States
  3. Zhejiang University of Technology, China
  4. Chinese Academy of Sciences, China

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all domains of life, the homeostasis of which requires tight regulation. Here we report that a Nudix-related transcriptional factor, designated MsNrtR (MSMEG_3198), controls the de novo pathway of NAD+ biosynthesis in M. smegmatis, a non-tuberculosis Mycobacterium. The integrated evidence in vitro and in vivo confirms that MsNrtR is an auto-repressor, and negatively controls the de novo NAD+ biosynthetic pathway. Binding of MsNrtR cognate DNA is finely mapped, which can be disrupted by an ADP-ribose intermediate. Unexpectedly, we discover that the acetylation of MsNrtR at Lysine 134 participates in the homeostasis of intra-cellular NAD+ level in M. smegmatis. Furthermore, we demonstrate that NrtR acetylation proceeds via the non-enzymatic acetyl-phosphate (AcP) route rather than the enzymatic Pat/CobB pathway. In addition, the acetylation of NrtR also occurs in its paralogs of Gram-positive bacterium Streptococcus and Gram-negative bacterium Vibrio, suggesting a common mechanism of post-translational modification in the context of NAD+ homeostasis. Together, it represents a first paradigm for the recruitment of acetylated NrtR to regulate bacterial central NAD+ metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rongsui Gao

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenhui Wei

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bachar H Hassan

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Li

    College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiao-Yu Deng

    Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Youjun Feng

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    fengyj@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8083-0175

Funding

National Natural Science Foundation of China (31830001)

  • Youjun Feng

National Key R&D Program of China (2017YFD0500202)

  • Youjun Feng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,074
    views
  • 384
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rongsui Gao
  2. Wenhui Wei
  3. Bachar H Hassan
  4. Jun Li
  5. Jiao-Yu Deng
  6. Youjun Feng
(2019)
A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation
eLife 8:e51603.
https://doi.org/10.7554/eLife.51603

Share this article

https://doi.org/10.7554/eLife.51603

Further reading

    1. Microbiology and Infectious Disease
    Louise Tzung-Harn Hsieh, Belinda S Hall ... Rachel E Simmonds
    Research Article

    The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone’s effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.