1. Microbiology and Infectious Disease
Download icon

A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation

  1. Rongsui Gao
  2. Wenhui Wei
  3. Bachar H Hassan
  4. Jun Li
  5. Jiaoyu Deng
  6. Youjun Feng  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Stony Brook University, United States
  3. Zhejiang University of Technology, China
  4. Chinese Academy of Sciences, China
Research Article
  • Cited 3
  • Views 1,381
  • Annotations
Cite this article as: eLife 2019;8:e51603 doi: 10.7554/eLife.51603
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all domains of life, the homeostasis of which requires tight regulation. Here we report that a Nudix-related transcriptional factor, designated MsNrtR (MSMEG_3198), controls the de novo pathway of NAD+ biosynthesis in M. smegmatis, a non-tuberculosis Mycobacterium. The integrated evidence in vitro and in vivo confirms that MsNrtR is an auto-repressor, and negatively controls the de novo NAD+ biosynthetic pathway. Binding of MsNrtR cognate DNA is finely mapped, which can be disrupted by an ADP-ribose intermediate. Unexpectedly, we discover that the acetylation of MsNrtR at Lysine 134 participates in the homeostasis of intra-cellular NAD+ level in M. smegmatis. Furthermore, we demonstrate that NrtR acetylation proceeds via the non-enzymatic acetyl-phosphate (AcP) route rather than the enzymatic Pat/CobB pathway. In addition, the acetylation of NrtR also occurs in its paralogs of Gram-positive bacterium Streptococcus and Gram-negative bacterium Vibrio, suggesting a common mechanism of post-translational modification in the context of NAD+ homeostasis. Together, it represents a first paradigm for the recruitment of acetylated NrtR to regulate bacterial central NAD+ metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rongsui Gao

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenhui Wei

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bachar H Hassan

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Li

    College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiaoyu Deng

    Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Youjun Feng

    Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    fengyj@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8083-0175

Funding

National Natural Science Foundation of China (31830001)

  • Youjun Feng

National Key R&D Program of China (2017YFD0500202)

  • Youjun Feng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: September 4, 2019
  2. Accepted: October 4, 2019
  3. Accepted Manuscript published: October 9, 2019 (version 1)
  4. Accepted Manuscript updated: October 10, 2019 (version 2)
  5. Accepted Manuscript updated: October 10, 2019 (version 3)
  6. Version of Record published: October 18, 2019 (version 4)

Copyright

© 2019, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    Page views
  • 292
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    J Stephan Wichers et al.
    Research Article Updated

    Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.

    1. Microbiology and Infectious Disease
    Hannah Tabakh et al.
    Research Article

    Pathogens encounter numerous antimicrobial responses during infection, including the reactive oxygen species (ROS) burst. ROS-mediated oxidation of host membrane poly-unsaturated fatty acids (PUFAs) generates the toxic alpha-beta carbonyl 4-hydroxy-2-nonenal (4-HNE). Though studied extensively in the context of sterile inflammation, research into 4-HNE's role during infection remains limited. Here we found that 4-HNE is generated during bacterial infection, that it impacts growth and survival in a range of bacteria, and that the intracellular pathogen Listeria monocytogenes induces many genes in response to 4-HNE exposure. A component of the L. monocytogenes 4-HNE response is the expression of the genes lmo0103 and lmo0613, deemed rha1 and rha2 (reductase of host alkenals), respectively, which code for two NADPH-dependent oxidoreductases that convert 4-HNE to the product 4-hydroxynonanal (4-HNA). Loss of these genes had no impact on L. monocytogenes bacterial burdens during murine or tissue culture infection. However, heterologous expression of rha1/2 in Bacillus subtilis significantly increased bacterial resistance to 4-HNE in vitro and promoted bacterial survival following phagocytosis by murine macrophages in an ROS dependent manner. Thus, Rha1 and Rha2 are not necessary for 4-HNE resistance in L. monocytogenes but are sufficient to confer resistance to an otherwise sensitive organism in vitro and in host cells. Our work demonstrates that 4-HNE is a previously unappreciated component of ROS-mediated toxicity encountered by bacteria within eukaryotic hosts.