SIRT6 is a DNA double-strand break sensor
Abstract
DNA double strand breaks are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure, with high affinity for double strand breaks. SIRT6 relocates to sites of damage independently of signalling and known sensors. It activates downstream signalling for double strand break repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of Homologous Recombination and Non-Homologous End Joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct double strand break sensors in downstream signalling.
Data availability
All the data generated or analyzed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Israel Science Foundation (188/17)
- Debra Toiber
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Onn et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 9,904
- views
-
- 1,104
- downloads
-
- 110
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 110
- citations for umbrella DOI https://doi.org/10.7554/eLife.51636