Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex

Abstract

Inhibitory autapses are self-innervating synaptic connections in GABAergic interneurons in the brain. Autapses in neocortical layers have not been systematically investigated, and their function in different mammalian species and specific interneuron types is poorly known. We investigated GABAergic parvalbumin-expressing basket cells (pvBCs) in layer 2/3 (L2/3) in human neocortical tissue resected in deep-brain surgery, and in mice as control. Most pvBCs showed robust GABAAR-mediated self-innervation in both species, but autapses were rare in nonfast-spiking GABAergic interneurons. Light- and electron microscopy analyses revealed pvBC axons innervating their own soma and proximal dendrites. GABAergic self-inhibition conductance was similar in human and mouse pvBCs and comparable to that of synapses from pvBCs to other L2/3 neurons. Autaptic conductance prolonged somatic inhibition in pvBCs after a spike and inhibited repetitive firing. Perisomatic autaptic inhibition is common in both human and mouse pvBCs of supragranular neocortex, where they efficiently control discharge of the pvBCs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Viktor Szegedi

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    For correspondence
    szegediv@bio.u-szeged.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4191-379X
  2. Melinda Paizs

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Judith Baka

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Pál Barzó

    Department of Neurosurgery, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Gábor Molnár

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Gabor Tamas

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7905-6001
  7. Karri Lamsa

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    For correspondence
    klamsa@bio.u-szeged.hu
    Competing interests
    The authors declare that no competing interests exist.

Funding

NKFIH (National Brain Research Programme)

  • Viktor Szegedi
  • Melinda Paizs
  • Karri Lamsa

ERC (INTERIMPACT)

  • Gabor Tamas

Hungarian Academy of Sciences

  • Viktor Szegedi
  • Gábor Molnár

University of Szeged Open Access Fund (4373)

  • Viktor Szegedi
  • Karri Lamsa

Eotvos Lorand Research Network

  • Gabor Tamas

National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00018)

  • Gabor Tamas

National Research, Development and Innovation Office (OTKA K128863)

  • Gábor Molnár
  • Gabor Tamas
  • Karri Lamsa

Ministry of Human Capacities Hungary (20391-3/2018/FEKUSTRAT)

  • Gabor Tamas
  • Karri Lamsa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Huguenard, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All procedures were performed with the approval of theUniversity of Szeged (no. I-74-8/2016) and in accordance withthe Guide for the Care and Use of Laboratory Animals (2011)(http://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-oflaboratory-animals.pdf).

Human subjects: All procedures were performed according to the Declaration of Helsinki with the approval of the University of Szeged Ethical Committee and Regional Human Investigation Review Board (ref. 75/2014). For all human tissue material, written consent was obtained from patients prior to surgery. Tissue obtained from underage patients was provided with agreement from a parent or guardian.

Version history

  1. Received: September 6, 2019
  2. Accepted: January 8, 2020
  3. Accepted Manuscript published: January 9, 2020 (version 1)
  4. Version of Record published: January 27, 2020 (version 2)

Copyright

© 2020, Szegedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,815
    views
  • 303
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viktor Szegedi
  2. Melinda Paizs
  3. Judith Baka
  4. Pál Barzó
  5. Gábor Molnár
  6. Gabor Tamas
  7. Karri Lamsa
(2020)
Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex
eLife 9:e51691.
https://doi.org/10.7554/eLife.51691

Share this article

https://doi.org/10.7554/eLife.51691

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.

    1. Neuroscience
    Liu Zhou, Wei Wei ... Zijiang J He
    Research Article

    We reliably judge locations of static objects when we walk despite the retinal images of these objects moving with every step we take. Here, we showed our brains solve this optical illusion by adopting an allocentric spatial reference frame. We measured perceived target location after the observer walked a short distance from the home base. Supporting the allocentric coding scheme, we found the intrinsic bias , which acts as a spatial reference frame for perceiving location of a dimly lit target in the dark, remained grounded at the home base rather than traveled along with the observer. The path-integration mechanism responsible for this can utilize both active and passive (vestibular) translational motion signals, but only along the horizontal direction. This asymmetric path-integration finding in human visual space perception is reminiscent of the asymmetric spatial memory finding in desert ants, pointing to nature’s wondrous and logically simple design for terrestrial creatures.