Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex

Abstract

Inhibitory autapses are self-innervating synaptic connections in GABAergic interneurons in the brain. Autapses in neocortical layers have not been systematically investigated, and their function in different mammalian species and specific interneuron types is poorly known. We investigated GABAergic parvalbumin-expressing basket cells (pvBCs) in layer 2/3 (L2/3) in human neocortical tissue resected in deep-brain surgery, and in mice as control. Most pvBCs showed robust GABAAR-mediated self-innervation in both species, but autapses were rare in nonfast-spiking GABAergic interneurons. Light- and electron microscopy analyses revealed pvBC axons innervating their own soma and proximal dendrites. GABAergic self-inhibition conductance was similar in human and mouse pvBCs and comparable to that of synapses from pvBCs to other L2/3 neurons. Autaptic conductance prolonged somatic inhibition in pvBCs after a spike and inhibited repetitive firing. Perisomatic autaptic inhibition is common in both human and mouse pvBCs of supragranular neocortex, where they efficiently control discharge of the pvBCs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Viktor Szegedi

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    For correspondence
    szegediv@bio.u-szeged.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4191-379X
  2. Melinda Paizs

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Judith Baka

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Pál Barzó

    Department of Neurosurgery, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Gábor Molnár

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Gabor Tamas

    MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7905-6001
  7. Karri Lamsa

    MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
    For correspondence
    klamsa@bio.u-szeged.hu
    Competing interests
    The authors declare that no competing interests exist.

Funding

NKFIH (National Brain Research Programme)

  • Viktor Szegedi
  • Melinda Paizs
  • Karri Lamsa

ERC (INTERIMPACT)

  • Gabor Tamas

Hungarian Academy of Sciences

  • Viktor Szegedi
  • Gábor Molnár

University of Szeged Open Access Fund (4373)

  • Viktor Szegedi
  • Karri Lamsa

Eotvos Lorand Research Network

  • Gabor Tamas

National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00018)

  • Gabor Tamas

National Research, Development and Innovation Office (OTKA K128863)

  • Gábor Molnár
  • Gabor Tamas
  • Karri Lamsa

Ministry of Human Capacities Hungary (20391-3/2018/FEKUSTRAT)

  • Gabor Tamas
  • Karri Lamsa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed with the approval of theUniversity of Szeged (no. I-74-8/2016) and in accordance withthe Guide for the Care and Use of Laboratory Animals (2011)(http://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-oflaboratory-animals.pdf).

Human subjects: All procedures were performed according to the Declaration of Helsinki with the approval of the University of Szeged Ethical Committee and Regional Human Investigation Review Board (ref. 75/2014). For all human tissue material, written consent was obtained from patients prior to surgery. Tissue obtained from underage patients was provided with agreement from a parent or guardian.

Copyright

© 2020, Szegedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,900
    views
  • 313
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viktor Szegedi
  2. Melinda Paizs
  3. Judith Baka
  4. Pál Barzó
  5. Gábor Molnár
  6. Gabor Tamas
  7. Karri Lamsa
(2020)
Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex
eLife 9:e51691.
https://doi.org/10.7554/eLife.51691

Share this article

https://doi.org/10.7554/eLife.51691

Further reading

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.