Abstract

Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)–a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data file has been provided for all figures in an Excel file.

Article and author information

Author details

  1. Kelly A Rotstan

    Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael M Abdelsayed

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luiz F M Passalacqua

    Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5490-2427
  4. Fabio Chizzolini

    Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kasireddy Sudarshan

    Department of Organic Chemistry, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7072-3226
  6. A Richard Chamberlin

    Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiří Míšek

    Department of Organic Chemistry, Charles University, Prague, Czech Republic
    For correspondence
    jirimisek1@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrej Luptak

    Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, United States
    For correspondence
    aluptak@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0632-5442

Funding

National Science Foundation (1804220)

  • Andrej Luptak

National Institutes of Health (R01GM094929)

  • Andrej Luptak

John Templeton Foundation

  • Andrej Luptak

Grantová Agentura České Republiky (17-25897Y)

  • Jiří Míšek

National Institutes of Health (Graduate Student Fellowship T32GM108561)

  • Kelly A Rotstan

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Graduate Student Fellowship 99999.013571/2013-03)

  • Luiz F M Passalacqua

University of California, Irvine (Miguel Velez Scholarship)

  • Luiz F M Passalacqua

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adrian Ferré-D'Amaré

Version history

  1. Received: September 9, 2019
  2. Accepted: February 12, 2020
  3. Accepted Manuscript published: February 13, 2020 (version 1)
  4. Version of Record published: March 2, 2020 (version 2)
  5. Version of Record updated: March 11, 2020 (version 3)

Copyright

© 2020, Rotstan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,195
    views
  • 591
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelly A Rotstan
  2. Michael M Abdelsayed
  3. Luiz F M Passalacqua
  4. Fabio Chizzolini
  5. Kasireddy Sudarshan
  6. A Richard Chamberlin
  7. Jiří Míšek
  8. Andrej Luptak
(2020)
Regulation of mRNA translation by a photoriboswitch
eLife 9:e51737.
https://doi.org/10.7554/eLife.51737

Share this article

https://doi.org/10.7554/eLife.51737

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.