The axonal actin-spectrin lattice acts as a tension buffering shock absorber

  1. Sushil Dubey
  2. Nishita Bhembre
  3. Shivani Bodas
  4. Sukh Veer
  5. Aurnab Ghose
  6. Andrew Callan-Jones  Is a corresponding author
  7. Pramod Pullarkat  Is a corresponding author
  1. Raman Research Institute, India
  2. Indian Institute of Science Education and Research, India
  3. Indian Institute of Science Education and Research, India
  4. Paris Diderot University, France

Abstract

Axons span extreme distances and are subjected to significant stretch deformations during limb movements or sudden head movements, especially during impacts. Yet, axon biomechanics, and its relation to the ultrastructure that allows axons to withstand mechanical stress, is poorly understood. Using a custom developed force apparatus, we demonstrate that chick dorsal root ganglion axons exhibit a tension buffering or strain-softening response, where its steady state elastic modulus decreases with increasing strain. We then explore the contributions from the various cytoskeletal components of the axon to show that the recently discovered membrane-associated actin-spectrin scaffold plays a prominent mechanical role. Finally, using a theoretical model, we argue that the actin-spectrin skeleton acts as an axonal tension buffer by reversibly unfolding repeat domains of the spectrin tetramers to release excess mechanical stress. Our results revise the current view point that microtubules and their associated proteins are the only significant load-bearing elements in axons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sushil Dubey

    Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Nishita Bhembre

    Soft Condensed Matter, Raman Research Institute, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Shivani Bodas

    Department of Biology, Indian Institute of Science Education and Research, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Sukh Veer

    Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Aurnab Ghose

    Biology, Indian Institute of Science Education and Research, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2053-3918
  6. Andrew Callan-Jones

    Laboratory of complex materials systems, Paris Diderot University, Paris, France
    For correspondence
    andrew.callan-jones@univ-paris-diderot.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Pramod Pullarkat

    Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
    For correspondence
    pramod@rri.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2716-7575

Funding

Department of Biotechnology , Ministry of Science and Technology (BT/PR13244/GBD/27/245/2009)

  • Pramod Pullarkat

Department of Biotechnology , Ministry of Science and Technology (BT/PR13244/GBD/27/245/2009)

  • Aurnab Ghose

Science and Engineering Research Board (EMR/2016/003730)

  • Aurnab Ghose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Dubey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,404
    views
  • 530
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sushil Dubey
  2. Nishita Bhembre
  3. Shivani Bodas
  4. Sukh Veer
  5. Aurnab Ghose
  6. Andrew Callan-Jones
  7. Pramod Pullarkat
(2020)
The axonal actin-spectrin lattice acts as a tension buffering shock absorber
eLife 9:e51772.
https://doi.org/10.7554/eLife.51772

Share this article

https://doi.org/10.7554/eLife.51772

Further reading

    1. Physics of Living Systems
    Tommaso Amico, Samuel Toluwanimi Dada ... Amos Maritan
    Research Article

    Many proteins have been recently shown to undergo a process of phase separation that leads to the formation of biomolecular condensates. Intriguingly, it has been observed that some of these proteins form dense droplets of sizeable dimensions already below the critical concentration, which is the concentration at which phase separation occurs. To understand this phenomenon, which is not readily compatible with classical nucleation theory, we investigated the properties of the droplet size distributions as a function of protein concentration. We found that these distributions can be described by a scale-invariant log-normal function with an average that increases progressively as the concentration approaches the critical concentration from below. The results of this scaling analysis suggest the existence of a universal behaviour independent of the sequences and structures of the proteins undergoing phase separation. While we refrain from proposing a theoretical model here, we suggest that any model of protein phase separation should predict the scaling exponents that we reported here from the fitting of experimental measurements of droplet size distributions. Furthermore, based on these observations, we show that it is possible to use the scale invariance to estimate the critical concentration for protein phase separation.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Ju Kang, Shijie Zhang ... Xin Wang
    Research Article

    Explaining biodiversity is a fundamental issue in ecology. A long-standing puzzle lies in the paradox of the plankton: many species of plankton feeding on a limited variety of resources coexist, apparently flouting the competitive exclusion principle (CEP), which holds that the number of predator (consumer) species cannot exceed that of the resources at a steady state. Here, we present a mechanistic model and demonstrate that intraspecific interference among the consumers enables a plethora of consumer species to coexist at constant population densities with only one or a handful of resource species. This facilitated biodiversity is resistant to stochasticity, either with the stochastic simulation algorithm or individual-based modeling. Our model naturally explains the classical experiments that invalidate the CEP, quantitatively illustrates the universal S-shaped pattern of the rank-abundance curves across a wide range of ecological communities, and can be broadly used to resolve the mystery of biodiversity in many natural ecosystems.