Etv transcription factors functionally diverge from their upstream FGF signaling in lens development

  1. Ankur Garg
  2. Abdul Hannan
  3. Qian Wang
  4. Neoklis Makrides
  5. Jian Zhong
  6. Hongge Li
  7. Sungtae Yoon
  8. Yingyu Mao
  9. Xin Zhang  Is a corresponding author
  1. Columbia University, United States
  2. Weill Cornell Medical College, United States

Abstract

The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs – Etv1, Etv 4, and Etv 5 – in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.

Data availability

The RNAseq data are available from the GEO repository (GSE137215).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ankur Garg

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abdul Hannan

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Wang

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Neoklis Makrides

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian Zhong

    Burke Medical Research Institute, Weill Cornell Medical College, White Plains, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongge Li

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sungtae Yoon

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yingyu Mao

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xin Zhang

    Department of Ophthalmology, Columbia University, New York, United States
    For correspondence
    xz2369@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5555-0825

Funding

National Eye Institute (EY017061)

  • Xin Zhang

National Eye Institute (EY025933)

  • Xin Zhang

Research to Prevent Blindness (Jules and Doris Stein Research to Prevent Blindness Professorship)

  • Xin Zhang

Starr Foundation (Graduate fellowship)

  • Ankur Garg

Natural Sciences and Engineering Research Council of Canada (Postdoctoral fellowship)

  • Qian Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Topisirovic, Jewish General Hospital, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (AABD8562) of Columbia University Medical Center.

Version history

  1. Received: September 16, 2019
  2. Accepted: February 10, 2020
  3. Accepted Manuscript published: February 11, 2020 (version 1)
  4. Version of Record published: March 13, 2020 (version 2)

Copyright

© 2020, Garg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,438
    views
  • 289
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ankur Garg
  2. Abdul Hannan
  3. Qian Wang
  4. Neoklis Makrides
  5. Jian Zhong
  6. Hongge Li
  7. Sungtae Yoon
  8. Yingyu Mao
  9. Xin Zhang
(2020)
Etv transcription factors functionally diverge from their upstream FGF signaling in lens development
eLife 9:e51915.
https://doi.org/10.7554/eLife.51915

Share this article

https://doi.org/10.7554/eLife.51915

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.