1. Developmental Biology
Download icon

Etv transcription factors functionally diverge from their upstream FGF signaling in lens development

  1. Ankur Garg
  2. Abdul Hannan
  3. Qian Wang
  4. Neoklis Makrides
  5. Jian Zhong
  6. Hongge Li
  7. Sungtae Yoon
  8. Yingyu Mao
  9. Xin Zhang  Is a corresponding author
  1. Columbia University, United States
  2. Weill Cornell Medical College, United States
Research Article
  • Cited 4
  • Views 1,459
  • Annotations
Cite this article as: eLife 2020;9:e51915 doi: 10.7554/eLife.51915

Abstract

The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs – Etv1, Etv 4, and Etv 5 – in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.

Data availability

The RNAseq data are available from the GEO repository (GSE137215).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ankur Garg

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abdul Hannan

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Wang

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Neoklis Makrides

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian Zhong

    Burke Medical Research Institute, Weill Cornell Medical College, White Plains, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongge Li

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sungtae Yoon

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yingyu Mao

    Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xin Zhang

    Department of Ophthalmology, Columbia University, New York, United States
    For correspondence
    xz2369@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5555-0825

Funding

National Eye Institute (EY017061)

  • Xin Zhang

National Eye Institute (EY025933)

  • Xin Zhang

Research to Prevent Blindness (Jules and Doris Stein Research to Prevent Blindness Professorship)

  • Xin Zhang

Starr Foundation (Graduate fellowship)

  • Ankur Garg

Natural Sciences and Engineering Research Council of Canada (Postdoctoral fellowship)

  • Qian Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (AABD8562) of Columbia University Medical Center.

Reviewing Editor

  1. Ivan Topisirovic, Jewish General Hospital, Canada

Publication history

  1. Received: September 16, 2019
  2. Accepted: February 10, 2020
  3. Accepted Manuscript published: February 11, 2020 (version 1)
  4. Version of Record published: March 13, 2020 (version 2)

Copyright

© 2020, Garg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,459
    Page views
  • 198
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Alessandro Bonfini et al.
    Research Article

    The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples ISC proliferation from expression of niche-derived signals but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.

    1. Developmental Biology
    2. Physics of Living Systems
    Yonghyun Song, Changbong Hyeon
    Research Article Updated

    Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.