1. Neuroscience
Download icon

Natural ITD statistics predict human auditory spatial perception

  1. Rodrigo Pavão  Is a corresponding author
  2. Elyse S Sussman
  3. Brian J Fischer
  4. José L Peña
  1. Universidade Federal do ABC, Brazil
  2. Albert Einstein College of Medicine, United States
  3. Seattle University, United States
Research Article
  • Cited 0
  • Views 562
  • Annotations
Cite this article as: eLife 2020;9:e51927 doi: 10.7554/eLife.51927

Abstract

A neural code adapted to the statistical structure of sensory cues may optimize perception. We investigated whether interaural time difference (ITD) statistics inherent in natural acoustic scenes are parameters determining spatial discriminability. The natural ITD rate of change across azimuth (ITDrc) and ITD variability over time (ITDv) were combined in a Fisher information statistic to assess the amount of azimuthal information conveyed by this sensory cue. We hypothesized that natural ITD statistics underlie the neural code for ITD and thus influence spatial perception. To test this hypothesis, sounds with invariant statistics were presented to measure human spatial discriminability and spatial novelty detection. Human auditory spatial perception showed correlation with natural ITD statistics, supporting our hypothesis. Further analysis showed that these results are consistent with classic models of ITD coding and can explain the ITD tuning distribution observed in the mammalian brainstem.

Article and author information

Author details

  1. Rodrigo Pavão

    Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo/SP, Brazil
    For correspondence
    rodrigo.pavao@ufabc.edu.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6857-8963
  2. Elyse S Sussman

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1013-0621
  3. Brian J Fischer

    Mathematics, Seattle University, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5786-0544
  4. José L Peña

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS104911)

  • José L Peña

National Institute on Deafness and Other Communication Disorders (DC004263)

  • Elyse S Sussman

National Institute on Deafness and Other Communication Disorders (DC007690)

  • José L Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was performed in accordance with the NIH Human Subjects Policies and Guidance and with the Brazilian National Health Council, and it was approved by the Internal Review Board of the Albert Einstein College of Medicine (#1999-023) and Ethics Committee of Universidade Federal do ABC (#2968291).

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: September 17, 2019
  2. Accepted: October 9, 2020
  3. Accepted Manuscript published: October 12, 2020 (version 1)
  4. Version of Record published: November 12, 2020 (version 2)
  5. Version of Record updated: December 30, 2020 (version 3)

Copyright

© 2020, Pavão et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 562
    Page views
  • 70
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Yunbo Li et al.
    Research Article

    The conserved MAP3K Dual leucine zipper kinases can activate JNK via MKK4 or MKK7. Vertebrate DLK and LZK share similar biochemical activities and undergo auto-activation upon increased expression. Depending on cell-type and nature of insults DLK and LZK can induce pro-regenerative, pro-apoptotic or pro-degenerative responses, although the mechanistic basis of their action is not well understood. Here, we investigated these two MAP3Ks in cerebellar Purkinje cells using loss- and gain-of function mouse models. While loss of each or both kinases does not cause discernible defects in Purkinje cells, activating DLK causes rapid death and activating LZK leads to slow degeneration. Each kinase induces JNK activation and caspase-mediated apoptosis independent of each other. Significantly, deleting CELF2, which regulates alternative splicing of Map2k7, strongly attenuates Purkinje cell degeneration induced by LZK, but not DLK. Thus, controlling the activity levels of DLK and LZK is critical for neuronal survival and health.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Laura J Wagstaff et al.
    Research Article

    After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS.