Natural ITD statistics predict human auditory spatial perception

  1. Rodrigo Pavão  Is a corresponding author
  2. Elyse S Sussman
  3. Brian J Fischer
  4. José L Peña
  1. Universidade Federal do ABC, Brazil
  2. Albert Einstein College of Medicine, United States
  3. Seattle University, United States

Abstract

A neural code adapted to the statistical structure of sensory cues may optimize perception. We investigated whether interaural time difference (ITD) statistics inherent in natural acoustic scenes are parameters determining spatial discriminability. The natural ITD rate of change across azimuth (ITDrc) and ITD variability over time (ITDv) were combined in a Fisher information statistic to assess the amount of azimuthal information conveyed by this sensory cue. We hypothesized that natural ITD statistics underlie the neural code for ITD and thus influence spatial perception. To test this hypothesis, sounds with invariant statistics were presented to measure human spatial discriminability and spatial novelty detection. Human auditory spatial perception showed correlation with natural ITD statistics, supporting our hypothesis. Further analysis showed that these results are consistent with classic models of ITD coding and can explain the ITD tuning distribution observed in the mammalian brainstem.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rodrigo Pavão

    Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo/SP, Brazil
    For correspondence
    rodrigo.pavao@ufabc.edu.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6857-8963
  2. Elyse S Sussman

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1013-0621
  3. Brian J Fischer

    Mathematics, Seattle University, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5786-0544
  4. José L Peña

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS104911)

  • José L Peña

National Institute on Deafness and Other Communication Disorders (DC004263)

  • Elyse S Sussman

National Institute on Deafness and Other Communication Disorders (DC007690)

  • José L Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was performed in accordance with the NIH Human Subjects Policies and Guidance and with the Brazilian National Health Council, and it was approved by the Internal Review Board of the Albert Einstein College of Medicine (#1999-023) and Ethics Committee of Universidade Federal do ABC (#2968291).

Copyright

© 2020, Pavão et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,420
    views
  • 177
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rodrigo Pavão
  2. Elyse S Sussman
  3. Brian J Fischer
  4. José L Peña
(2020)
Natural ITD statistics predict human auditory spatial perception
eLife 9:e51927.
https://doi.org/10.7554/eLife.51927

Share this article

https://doi.org/10.7554/eLife.51927

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Brandon L Holder, Stephane Dissel
    Insight

    Novel tools that allow neuron-specific investigations of the structure controlling sleep regulation in fruit flies reveal the extent of neuronal heterogeneity.

    1. Neuroscience
    Ekin Kaya, Evan Wegienka ... Gideon Rothschild
    Research Article

    Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body’s energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave-ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to reduce peripheral glucose levels. However, whether SWRs are enhanced by recent feeding—when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation—remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and suggest that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.