Movement-related coupling of human subthalamic nucleus spikes to cortical gamma

  1. Petra Fischer  Is a corresponding author
  2. Witold J Lipski
  3. Wolf-Julian Neumann
  4. Robert S Turner
  5. Pascal Fries
  6. Peter Brown
  7. Robert Mark Richardson  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Pittsburgh, United States
  3. Charité - Universitätsmedizin Berlin, Germany
  4. Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany
  5. Massachusetts General Hospital and Harvard Medical School, United States

Abstract

Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models that consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.

Data availability

We have provided the data and the code (including the functions to run the cluster-based permutation statistics) with which one can generate the time-frequency figures in the main manuscript and in the supplementary figures (Fig. 3, 4, Fig. 3- figure supplement 5 and Fig. 4-figure supplement 2).

Article and author information

Author details

  1. Petra Fischer

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    For correspondence
    petra.fischer@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5585-8977
  2. Witold J Lipski

    Neurosurgery, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1499-6569
  3. Wolf-Julian Neumann

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6758-9708
  4. Robert S Turner

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6074-4365
  5. Pascal Fries

    Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4270-1468
  6. Peter Brown

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5201-3044
  7. Robert Mark Richardson

    Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, United States
    For correspondence
    Mark.Richardson@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council (MC_UU_12024/1)

  • Petra Fischer
  • Peter Brown

National Institute for Health Research (R01 NS091853-01A1)

  • Robert S Turner

National Institute for Health Research (R01 NS110424-01 CRCNS)

  • Robert S Turner
  • Robert Mark Richardson

National Institute of Mental Health (R01MH107797)

  • Witold J Lipski
  • Robert Mark Richardson

Deutsche Forschungsgemeinschaft (SPP 1665,FOR 1847,FR2557/5-1-CORNET,FR2557/6-1-NeuroTMR)

  • Pascal Fries

National Institute for Health Research (1U54MH091657-WU-Minn-Consortium-HCP)

  • Pascal Fries

LOEWE Zentrum AdRIA (NeFF)

  • Pascal Fries

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Patients provided written, informed consent in accordance with a protocol approved by the Institutional Review Board of the University of Pittsburgh (IRB Protocol no. PRO13110420).

Copyright

© 2020, Fischer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,237
    views
  • 336
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Petra Fischer
  2. Witold J Lipski
  3. Wolf-Julian Neumann
  4. Robert S Turner
  5. Pascal Fries
  6. Peter Brown
  7. Robert Mark Richardson
(2020)
Movement-related coupling of human subthalamic nucleus spikes to cortical gamma
eLife 9:e51956.
https://doi.org/10.7554/eLife.51956

Share this article

https://doi.org/10.7554/eLife.51956

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.