Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain

  1. Hui Ye
  2. Shamsideen A Ojelade
  3. David Li-Kroeger
  4. Zhongyuan Zuo
  5. Liping Wang
  6. Yarong Li
  7. Jessica Y J Gu
  8. Ulrich Tepass
  9. Avital Adah Rodal
  10. Hugo J Bellen
  11. Joshua M Shulman  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. UT Southwestern Medical Center, United States
  3. University of Toronto, Canada
  4. Brandeis University, United States

Abstract

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hui Ye

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Shamsideen A Ojelade

    Psychiatry, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. David Li-Kroeger

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6473-7691
  4. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Liping Wang

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Yarong Li

    Department of Neurology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Jessica Y J Gu

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  8. Ulrich Tepass

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  9. Avital Adah Rodal

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2051-8304
  10. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  11. Joshua M Shulman

    Department of Neurology, Baylor College of Medicine, Houston, United States
    For correspondence
    joshua.shulman@bcm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-1971

Funding

National Institutes of Health (R01AG053960,R01NS103967,U01AG046161,U01AG061357,P30CA125123,U54HD083092)

  • Avital Adah Rodal
  • Joshua M Shulman

Burroughs Wellcome Fund (Career Award for Medical Scientists,Postdoctoral Enrichment Program Award (BWF-1017399))

  • Shamsideen A Ojelade
  • Joshua M Shulman

Alzheimer's Association (AARFD-16-442630)

  • Shamsideen A Ojelade

Howard Hughes Medical Institute

  • Hugo J Bellen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,778
    views
  • 535
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Ye
  2. Shamsideen A Ojelade
  3. David Li-Kroeger
  4. Zhongyuan Zuo
  5. Liping Wang
  6. Yarong Li
  7. Jessica Y J Gu
  8. Ulrich Tepass
  9. Avital Adah Rodal
  10. Hugo J Bellen
  11. Joshua M Shulman
(2020)
Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain
eLife 9:e51977.
https://doi.org/10.7554/eLife.51977

Share this article

https://doi.org/10.7554/eLife.51977

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.