Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain

  1. Hui Ye
  2. Shamsideen A Ojelade
  3. David Li-Kroeger
  4. Zhongyuan Zuo
  5. Liping Wang
  6. Yarong Li
  7. Jessica Y J Gu
  8. Ulrich Tepass
  9. Avital Adah Rodal
  10. Hugo J Bellen
  11. Joshua M Shulman  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. UT Southwestern Medical Center, United States
  3. University of Toronto, Canada
  4. Brandeis University, United States

Abstract

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hui Ye

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Shamsideen A Ojelade

    Psychiatry, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. David Li-Kroeger

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6473-7691
  4. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Liping Wang

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Yarong Li

    Department of Neurology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Jessica Y J Gu

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  8. Ulrich Tepass

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  9. Avital Adah Rodal

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2051-8304
  10. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  11. Joshua M Shulman

    Department of Neurology, Baylor College of Medicine, Houston, United States
    For correspondence
    joshua.shulman@bcm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-1971

Funding

National Institutes of Health (R01AG053960,R01NS103967,U01AG046161,U01AG061357,P30CA125123,U54HD083092)

  • Avital Adah Rodal
  • Joshua M Shulman

Burroughs Wellcome Fund (Career Award for Medical Scientists,Postdoctoral Enrichment Program Award (BWF-1017399))

  • Shamsideen A Ojelade
  • Joshua M Shulman

Alzheimer's Association (AARFD-16-442630)

  • Shamsideen A Ojelade

Howard Hughes Medical Institute

  • Hugo J Bellen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,909
    views
  • 550
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Ye
  2. Shamsideen A Ojelade
  3. David Li-Kroeger
  4. Zhongyuan Zuo
  5. Liping Wang
  6. Yarong Li
  7. Jessica Y J Gu
  8. Ulrich Tepass
  9. Avital Adah Rodal
  10. Hugo J Bellen
  11. Joshua M Shulman
(2020)
Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain
eLife 9:e51977.
https://doi.org/10.7554/eLife.51977

Share this article

https://doi.org/10.7554/eLife.51977

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.