A neurobiological association of revenge propensity during intergroup conflict

  1. Xiaochun Han
  2. Michele J Gelfand
  3. Bing Wu
  4. Ting Zhang
  5. Wenxin Li
  6. Tianyu Gao
  7. Chenyu Pang
  8. Taoyu Wu
  9. Yuqing Zhou
  10. Shuai Zhou
  11. Xinhuai Wu  Is a corresponding author
  12. Shihui Han  Is a corresponding author
  1. Peking University, China
  2. University of Maryland, United States
  3. Medical Center of PLA General Hospital, China

Abstract

Revenge during intergroup conflict is a human universal, but its neurobiological underpinnings remain unclear. We address this by integrating functional MRI and measurements of endogenous oxytocin in participants who view an ingroup and an outgroup member's suffering that is caused mutually (Revenge group) or respectively by a computer (Control group). We show that intergroup conflict encountered by the Revenge group is associated with an increased level of oxytocin in saliva compared to in the Control group. Furthermore, the medial prefrontal activity in response to ingroup pain in the Revenge but not Control group mediates the association between endogenous oxytocin and the propensity to give painful electric shocks to outgroup members regardless of whether they were directly involved in the conflict. Our findings highlight an important neurobiological correlate of revenge propensity which may be implicated in conflict contagion across individuals in the context of intergroup conflict.

Data availability

All data generated or analysed for figures of this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-6.

Article and author information

Author details

  1. Xiaochun Han

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Michele J Gelfand

    Psychology, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bing Wu

    Radiology, Medical Center of PLA General Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ting Zhang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wenxin Li

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Tianyu Gao

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Chenyu Pang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Taoyu Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuqing Zhou

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Shuai Zhou

    Radiology, Medical Center of PLA General Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xinhuai Wu

    Radiology, Medical Center of PLA General Hospital, Beijing, China
    For correspondence
    bei925@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  12. Shihui Han

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    shan@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3350-5104

Funding

National Natural Science Foundation of China (31661143039)

  • Shihui Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marius V Peelen, Radboud University, Netherlands

Ethics

Human subjects: Informed consent was obtained prior to the experiment. All participants were paid for their participation. This study was approved by the local ethics committee at the School of Psychological and Cognitive Sciences, Peking University.(#2015-12-04)

Version history

  1. Received: September 19, 2019
  2. Accepted: February 20, 2020
  3. Accepted Manuscript published: March 3, 2020 (version 1)
  4. Version of Record published: March 5, 2020 (version 2)

Copyright

© 2020, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,033
    views
  • 400
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaochun Han
  2. Michele J Gelfand
  3. Bing Wu
  4. Ting Zhang
  5. Wenxin Li
  6. Tianyu Gao
  7. Chenyu Pang
  8. Taoyu Wu
  9. Yuqing Zhou
  10. Shuai Zhou
  11. Xinhuai Wu
  12. Shihui Han
(2020)
A neurobiological association of revenge propensity during intergroup conflict
eLife 9:e52014.
https://doi.org/10.7554/eLife.52014

Share this article

https://doi.org/10.7554/eLife.52014

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.