In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy

  1. Sicong He
  2. Ye Tian
  3. Shachuan Feng
  4. Yi Wu
  5. Xinwei Shen
  6. Kani Chen
  7. Yingzhu He
  8. Qiqi Sun
  9. Xuesong Li
  10. Jin Xu  Is a corresponding author
  11. Zilong Wen  Is a corresponding author
  12. Jianan Y Qu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. South China University of Technology, China

Abstract

Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2-4, Figure 1-supplement 2, Figure 2-supplement 4, Figure 3-supplement 1, Figure 3-supplement 3, Figure 4-supplement 1.

Article and author information

Author details

  1. Sicong He

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Ye Tian

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9655-7123
  3. Shachuan Feng

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8789-194X
  4. Yi Wu

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinwei Shen

    Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Kani Chen

    Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Yingzhu He

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2416-6254
  8. Qiqi Sun

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  9. Xuesong Li

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  10. Jin Xu

    Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
    For correspondence
    xujin@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359
  11. Zilong Wen

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    zilong@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
  12. Jianan Y Qu

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    eequ@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6809-0087

Funding

Hong Kong University of Science and Technology (RPC10EG33)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (C6002-17GF)

  • Jianan Y Qu

National Key R&D Program of China (2018YFA0800200)

  • Jin Xu

Research Grants Council, University Grants Committee (662513)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16103215)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16148816)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16102518)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-607/12R)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-706/11-1)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (AOE/M-09/12)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-605/18W)

  • Jianan Y Qu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,342
    views
  • 800
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sicong He
  2. Ye Tian
  3. Shachuan Feng
  4. Yi Wu
  5. Xinwei Shen
  6. Kani Chen
  7. Yingzhu He
  8. Qiqi Sun
  9. Xuesong Li
  10. Jin Xu
  11. Zilong Wen
  12. Jianan Y Qu
(2020)
In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy
eLife 9:e52024.
https://doi.org/10.7554/eLife.52024

Share this article

https://doi.org/10.7554/eLife.52024

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.