In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy

  1. Sicong He
  2. Ye Tian
  3. Shachuan Feng
  4. Yi Wu
  5. Xinwei Shen
  6. Kani Chen
  7. Yingzhu He
  8. Qiqi Sun
  9. Xuesong Li
  10. Jin Xu  Is a corresponding author
  11. Zilong Wen  Is a corresponding author
  12. Jianan Y Qu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. South China University of Technology, China

Abstract

Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2-4, Figure 1-supplement 2, Figure 2-supplement 4, Figure 3-supplement 1, Figure 3-supplement 3, Figure 4-supplement 1.

Article and author information

Author details

  1. Sicong He

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Ye Tian

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9655-7123
  3. Shachuan Feng

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8789-194X
  4. Yi Wu

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinwei Shen

    Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Kani Chen

    Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Yingzhu He

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2416-6254
  8. Qiqi Sun

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  9. Xuesong Li

    Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  10. Jin Xu

    Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
    For correspondence
    xujin@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359
  11. Zilong Wen

    Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    zilong@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
  12. Jianan Y Qu

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    eequ@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6809-0087

Funding

Hong Kong University of Science and Technology (RPC10EG33)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (C6002-17GF)

  • Jianan Y Qu

National Key R&D Program of China (2018YFA0800200)

  • Jin Xu

Research Grants Council, University Grants Committee (662513)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16103215)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16148816)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (16102518)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-607/12R)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-706/11-1)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (AOE/M-09/12)

  • Jianan Y Qu

Research Grants Council, University Grants Committee (T13-605/18W)

  • Jianan Y Qu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 804
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.52024

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.