Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7

  1. Fuzhou Ye
  2. Ioly Kotta-Loizou
  3. Milija Jovanovic
  4. Xiaojiao Liu
  5. David TF Dryden
  6. Martin Buck
  7. Xiaodong Zhang  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Durham, United Kingdom

Abstract

Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.

Data availability

All data generated or analysed during the study are included in the manuscript and supporting files. The cryo EM maps and structural models will be deposited into EMDB and PDB with access codes 6R9G and 6R9B.

The following data sets were generated

Article and author information

Author details

  1. Fuzhou Ye

    Section of Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioly Kotta-Loizou

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Milija Jovanovic

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaojiao Liu

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. David TF Dryden

    Department of Biosciences, University of Durham, Durham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Buck

    Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaodong Zhang

    Section of Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom
    For correspondence
    xiaodong.zhang@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9786-7038

Funding

Biotechnology and Biological Sciences Research Council (BB/N007816/1)

  • Fuzhou Ye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,403
    views
  • 340
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fuzhou Ye
  2. Ioly Kotta-Loizou
  3. Milija Jovanovic
  4. Xiaojiao Liu
  5. David TF Dryden
  6. Martin Buck
  7. Xiaodong Zhang
(2020)
Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7
eLife 9:e52125.
https://doi.org/10.7554/eLife.52125

Share this article

https://doi.org/10.7554/eLife.52125

Further reading

    1. Structural Biology and Molecular Biophysics
    Aya Matsui, Cathy Spangler ... Eric Gouaux
    Research Article

    Chemical synapses are the major sites of communication between neurons in the nervous system and mediate either excitatory or inhibitory signaling. At excitatory synapses, glutamate is the primary neurotransmitter and upon release from presynaptic vesicles, is detected by postsynaptic glutamate receptors, which include ionotropic AMPA and NMDA receptors. Here, we have developed methods to identify glutamatergic synapses in brain tissue slices, label AMPA receptors with small gold nanoparticles (AuNPs), and prepare lamella for cryo-electron tomography studies. The targeted imaging of glutamatergic synapses in the lamella is facilitated by fluorescent pre- and postsynaptic signatures, and the subsequent tomograms allow for the identification of key features of chemical synapses, including synaptic vesicles, the synaptic cleft, and AuNP-labeled AMPA receptors. These methods pave the way for imaging brain regions at high resolution, using unstained, unfixed samples preserved under near-native conditions.

    1. Structural Biology and Molecular Biophysics
    Augustus J Lowry, Pengfei Liang ... Yang Zhang
    Research Article

    The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure–function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.