Abstract

Blood vessels (BVs) are considered an integral component of neural stem cells (NSCs) niches. NSCs in the dentate gyrus (DG) have enigmatic elaborated apical cellular processes that are associated with BVs. Whether this contact serves as a mechanism for delivering circulating molecules is not known. Here we uncovered a previously unrecognized communication route allowing exclusive direct access of blood-borne substances to hippocampal NSCs. BBB-impermeable fluorescent tracer injected transcardially to mice is selectively uptaken by DG NSCs within a minute, via the vessel-associated apical processes. These processes, measured >30nm in diameter, establish direct membrane-to-membrane contact with endothelial cells in specialized areas of irregular endothelial basement membrane and enriched with vesicular activity. Doxorubicin, a brain-impermeable chemotherapeutic agent, is also readily and selectively uptaken by NSCs and reduces their proliferation, which might explain its problematic anti-neurogenic or cognitive side-effect. The newly-discovered NSC-BV communication route explains how circulatory neurogenic mediators are 'sensed' by NSCs.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Tamar Licht

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    For correspondence
    tamarli@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2333-1665
  2. Esther Sasson

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Batia Bell

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Myriam Grunewald

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Saran Kumar

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Tirzah Kreisel

    Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Ayal Ben-Zvi

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Eli Keshet

    Developmental Biology and Cancer Research, Hebrew University, Jerusalem, Israel
    For correspondence
    elik@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (322692)

  • Tamar Licht
  • Myriam Grunewald
  • Saran Kumar
  • Eli Keshet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the animal care and use committee of the Hebrew University (Protocol MD-14-13900-3). Every effort was made to minimize the numbers of animals and suffering.

Copyright

© 2020, Licht et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,178
    views
  • 367
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tamar Licht
  2. Esther Sasson
  3. Batia Bell
  4. Myriam Grunewald
  5. Saran Kumar
  6. Tirzah Kreisel
  7. Ayal Ben-Zvi
  8. Eli Keshet
(2020)
Hippocampal neural stem cells facilitate access from circulation via apical cytoplasmic processes
eLife 9:e52134.
https://doi.org/10.7554/eLife.52134

Share this article

https://doi.org/10.7554/eLife.52134

Further reading

    1. Neuroscience
    Mirela Zaneva, Tao Coll-Martín ... Alyssa Hillary Zisk
    Feature Article

    Since its inception, the concept of neurodiversity has been defined in a number of different ways, which can cause confusion among those hoping to educate themselves about the topic. Learning about neurodiversity can also be challenging because there is a lack of well-curated, appropriately contextualized information on the topic. To address such barriers, we present an annotated reading list that was developed collaboratively by a neurodiverse group of researchers. The nine themes covered in the reading list are: the history of neurodiversity; ways of thinking about neurodiversity; the importance of lived experience; a neurodiversity paradigm for autism science; beyond deficit views of ADHD; expanding the scope of neurodiversity; anti-ableism; the need for robust theory and methods; and integration with open and participatory work. We hope this resource can support readers in understanding some of the key ideas and topics within neurodiversity, and that it can further orient researchers towards more rigorous, destigmatizing, accessible, and inclusive scientific practices.

    1. Neuroscience
    Jierui Qin, Tingting Yang ... Wei Zhang
    Research Article

    As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.