PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis

Abstract

Colorectal cancer (CRC) is a major cause of human death. Mortality is primarily due to metastatic organ colonization, with the liver being the primary organ affected. We modeled metastatic CRC (mCRC) liver colonization using patient-derived primary and metastatic tumor xenografts (PDX). Such PDX modeling predicted patient survival outcomes. In vivo selection of multiple PDXs for enhanced metastatic colonization capacity upregulated the gluconeogenic enzyme PCK1, which enhanced liver metastatic hypoxic growth by driving pyrimidine nucleotide biosynthesis under hypoxia. Consistently, highly metastatic tumors upregulated multiple pyrimidine biosynthesis intermediary metabolites. Therapeutic inhibition of the pyrimidine biosynthetic enzyme DHODH with leflunomide substantially impaired CRC liver metastatic colonization and hypoxic growth. Our findings provide a potential mechanistic basis for the epidemiologic association of anti-gluconeogenic drugs with improved CRC metastasis outcomes, reveal the exploitation of a gluconeogenesis enzyme for pyrimidine biosynthesis under hypoxia, and implicate DHODH and PCK1 as metabolic therapeutic targets in colorectal cancer metastatic progression.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE138248

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Norihiro Yamaguchi

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ethan M Weinberg

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Nguyen

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6578-3454
  4. Maria V Liberti

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hani Goodarzi

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yelena Y Janjigian

    Gastrointestinal Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip B Paty

    Colorectal Service, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Leonard B Saltz

    Gastrointestinal Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. T Peter Kingham

    Hepatopancreatobiliary Service, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jia Min Loo

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elisa de Stanchina

    Antitumor Assessment Core Facility, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sohail Tavazoie

    Laboratory of Systems Cancer Biology, The Rockefeller University, New York, United States
    For correspondence
    stavazoie@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4966-9018

Funding

National Center for Advancing Translational Sciences (UL1 TR001866)

  • Norihiro Yamaguchi
  • Ethan M Weinberg

Meyer Foundation

  • Norihiro Yamaguchi

The Helmsley Charitable trust

  • Norihiro Yamaguchi

National Institute of General Medical Sciences (T32GM07739)

  • Alexander Nguyen

NIH Office of the Director (T32CA009673-36A1)

  • Hani Goodarzi

NIH Office of the Director (1K99CA194077-01)

  • Hani Goodarzi

National Cancer Institute (K00CA222986)

  • Maria V Liberti

Starr Foundation

  • Sohail Tavazoie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved protocol, The Rockefeller University Institutional Animal Care and Use Committee (protocol 15783-H).

Human subjects: Approval for the study was obtained through the MSKCC Institutional Review Board/Privacy Board (protocol 10-018A), the MSKCC Institutional Animal Care and Use Committee (protocol 04-03-009), The Rockefeller University Institutional Review Board (protocol STA-0681), Written consent was obtained from all human participants who provided samples for patient-derived xenografts.

Copyright

© 2019, Yamaguchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,454
    views
  • 606
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Norihiro Yamaguchi
  2. Ethan M Weinberg
  3. Alexander Nguyen
  4. Maria V Liberti
  5. Hani Goodarzi
  6. Yelena Y Janjigian
  7. Philip B Paty
  8. Leonard B Saltz
  9. T Peter Kingham
  10. Jia Min Loo
  11. Elisa de Stanchina
  12. Sohail Tavazoie
(2019)
PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis
eLife 8:e52135.
https://doi.org/10.7554/eLife.52135

Share this article

https://doi.org/10.7554/eLife.52135

Further reading

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.